|Table of Contents|
[1].Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles[J].Journal of Materiomics,2019,(01):133-146.[doi:https://doi.org/10.1016/j.jmat.2018.12.005]
 Michael Greena,Peng Xiangb,Zhanqiang Liuc,et al.Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles[J].Journal of Materiomics,2019,(01):133-146.[doi:https://doi.org/10.1016/j.jmat.2018.12.005]
Copy

Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2019年01期
Page:
133-146
Research Field:
Publishing date:
2019-03-30

Info

Title:
Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles
Highlights:
Michael GreenaPeng XiangbZhanqiang LiucJames MurowchickdXinyu TanbFuqiang HuangceXiaobo Chena
aDepartment of Chemistry, University of Missouri-Kansas City, Kansas City, MO, 64110, USA;bCollege of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang, 443002, China;cState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China;dDepartment of Geosciences, University of Missouri-Kansas City, Kansas City, MO, 64110, USA;eState Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
Keywords:
Microwave absorptionBlack TiO2 nanoparticlesHydrogenationAluminum reduction
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.12.005
Abstract:
Interactions between incident electromagnetic energy and matter are of critical importance for numerous civil and military applications such as photocatalysis, solar cells, optics, radar detection, communications, information processing and transport et al. Traditional mechanisms for such interactions in the microwave frequency mainly rely on dipole rotations and magnetic domain resonance. In this study, we present the first report of the microwave absorption of Al/H2 treated TiO2 nanoparticles, where the Al/H2 treatment not only induces structural and optical property changes, but also largely improves the microwave absorption performance of TiO2 nanoparticles. Moreover, the frequency of the microwave absorption can be finely controlled with the treatment temperature, and the absorption efficiency can reach optimal values with a careful temperature tuning. A large reflection loss of ?58.02?dB has been demonstrated with 3.1?mm TiO2 coating when the treating temperature is 700?°C. The high efficiency of microwave absorption is most likely linked to the disordering-induced property changes in the materials. Along with the increased microwave absorption properties are largely increased visible-light and IR absorptions, and enhanced electrical conductivity and reduced skin-depth, which is likely related to the interfacial defects within the TiO2 nanoparticles caused by the Al/H2 treatment.

References:

[1] Tong X. Advanced materials for electromagnetic interference shielding. CRC Press; 2016.
[2] Vinoy K, Jha R. Radar absorbing materials: from theory to design and characterization. Kluwer Academic Publishers; 1996.
[3] Micheli D. Radar absorbing materials and microwave shielding structures design. Lap Lambert Academic Publishing; 2012.
[4] Soohoo R. Microwave magnetics. New York: Harper & Row Publishers; 1985.
[5] Von Hippel AR. Dielectric materials and applications. MIT Press; 1966.
[6] Duan Y, Guan H. Microwave absorbing materials. Pan Stanford Publishing; 2017.
[7] Zhang J, Li M, Feng Z, Chen J, Li C. UV Raman spectroscopic study on TiO2. I. phase transformation at the surface and in the bulk. J Phys Chem B 2006;110: 927e35.
[8] Green M, Tian L, Xiang P, Murowchick J, Tan X, Chen X. Co2P nanoparticles for microwave absorption. Mater. Today Nano 2018;1:1e7.
[9] Green M, Liu Z, Xiang P, Tan X, Huang F, Liu L, et al. Ferric metal-organic framework for microwave absorption. Mater. Today Chem. 2018;9:140e8.
[10] Green M, Liu Z, Xiang P, Liu Y, Zhou M, Tan X, Huang F, Liu L, Chen X. Doped, conductive SiO2 nanoparticles for large microwave absorption. Light Sci Appl 2018;7:87.
[11] Xia T, Zhang C, Oyler NA, Chen X. Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv Mater 2013;25:6905e10.
[12] Xia T, Zhang C, Oyler NA, Chen X. Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J Mater Res 2014;29:2198e210.
[13] Xia T, Cao Y, Oyler NA, Murowchick J, Liu L, Chen X. Strong microwave absorption of hydrogenated wide bandgap semiconductor nanoparticles. ACS Appl Mater Interfaces 2015;7:10407e13.
[14] Green MA, Xu J, Liu H, Zhao J, Li K, Liu L, et al. Terahertz absorption of hydrogenated TiO2 nanoparticles. Mater. Today Phys. 2018;4:64e9.
[15] Green M, Tian L, Xiang P, Murowchick J, Tan X, Chen X. FeP nanoparticles: a new material for microwave absorption. Mater. Chem. Front. 2018;2: 1119e25.
[16] Chen X, Liu L, Yu PY, Mao SS. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011;331: 746e50.
[17] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37e8.
[18] Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 2012;134:7600e3.
[19] Liu N, Schneider C, Freitag D, Hartmann M, Venkatesan U, Müller J, et al. Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett 2014;14:3309e13.
[20] Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, et al. Hydrogentreated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 2011;11:3026e33.
[21] Choi W, Termin A, Hoffmann MR. The role of metal ion dopants in quantumsized TiO2: correlation between photoreactivity and charge Carrier recombination dynamics. J Phys Chem 1994;98:13669e79.
[22] Fu J, Cao S, Yu J. Dual Z-scheme charge transfer in TiO2eAgeCu2O composite for enhanced photocatalytic hydrogen generation. J Mater 2015;1:124e33.
[23] Li Z, Wu J. Novel titanium dioxide ceramics containing bismuth and antimony. J Mater 2017;3:112e20.
[24] Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 2007;107:2891e959.
[25] Zhou C, Ye NF, Yan XH, Wang JJ, Pan JM, Wang DF, et al. Construction of hybrid Z-scheme graphitic C3N4/reduced TiO2 microsphere with visible-light-driven photocatalytic activity. J Mater 2018;4:238e46.
[26] Zhao C, Huang D, Chen J. DFT study for combined influence of C-doping and external electric field on electronic structure and optical properties of TiO2 (001) surface. J Mater 2018;4:247e55.
[27] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001;293:269e71.
[28] Liu H, Ma H, Su T, Zhang Y, Sun B, Liu B, Kong L, Liu B, Jia X. High-thermoelectric performance of TiO2-x fabricated under high pressure at high temperatures. J Mater 2017;3:286e92.
[29] Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P. Self-doped Ti3? enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 2010;132:11856e7.
[30] Wang B, Shen S, Mao SS. Black TiO2 for solar hydrogen conversion. J Mater 2017;3:96e111.
[31] Chen X, Burda C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc 2008;130: 5018e9.
[32] Chen X, Liu L, Liu Z, Marcus MA, Wang WC, Oyler NA, et al. Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci Rep 2013;3.
[33] Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ Sci 2013;6:3007e14.
[34] Lin T, Yang C, Wang Z, Yin H, Lü X, Huang F, et al. Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy Environ Sci 2014;7:967e72.
[35] Zhu G, Lin T, Lü X, Zhao W, Yang C, Wang Z, et al. Black brookite titania with high solar absorption and excellent photocatalytic performance. J Mater Chem A 2013;1:9650e3.
[36] Yin H, Lin T, Yang C, Wang Z, Zhu G, Xu T, et al. Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. Chem - A Eur J 2013;19:13313e6.
[37] Naito Y, Suetake K. Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans Microw Theor Tech 1971;19:65e72.
[38] Naito Y, Mizumoto T, Wakita Y, Takahashi M. Widening the bandwidth of ferrite electromagnetic wave absorbers by attaching rubber ferrite. Electron. Commun. Japan (Part I Commun. 1994;77:76e86.
[39] Lakshmi K, John H, Mathew KT, Joseph R, George KE. Microwave absorption, reflection and EMI shielding of PU-PANI composite. Acta Mater 2009;57: 371e5.
[40] Doebelin N, Kleeberg R. Profex: a graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr 2015;48:1573e80.
[41] Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 2011;44:1272e6.
[42] Cullity BD, Stock SR. Elements of x-ray diffraction. Prentice Hall; 2001.
[43] Roberts M, Thomas J, Anderson J. Surface and defect properties of solids. Cambridge: Royal Society of Chemistry; 1972.
[44] Su W, Zhang J, Feng Z, Chen T, Ying P, Li C. Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. J Phys Chem C 2008;112:7710e6.
[45] Tian L, Xu J, Just M, Green M, Liu L, Chen X. Broad range energy absorption enabled by hydrogenated TiO2 nanosheets: from optical to infrared and microwave. J Mater Chem C 2017;5:4645e53.
[46] Zou J, Gao J, Xie F. An amorphous TiO2 sol sensitized with H2O2 with the enhancement of photocatalytic activity. J Alloy Comp 2010;497:420e7.
[47] Zhang Y, Shang M, Mi Y, Xia T, Wallenmeyer P, Murowchick J, et al. Influence of the amount of hydrogen fluoride on the formation of (001)-faceted titanium dioxide nanosheets and their photocatalytic hydrogen generation performance. Chempluschem 2014;79:1159e66.
[48] Jeanne L. McHale, Molecular spectroscopy. CRC Press; 2017.
[49] Elser MJ, Diwald O. Facilitated lattice oxygen depletion in consolidated TiO2 nanocrystal ensembles: a quantitative spectroscopic O2 adsorption study. J Phys Chem C 2012;116:2896e903.
[50] Pesci FM, Wang G, Klug DR, Li Y, Cowan AJ. Efficient suppression of electronhole recombination in oxygen-deficient hydrogen-treated TiO2 nanowires for photoelectrochemical water splitting. J Phys Chem C 2013;117:25837e44.
[51] Wang C, Chou P. Effects of various hydrogenated treatments on formation and photocatalytic activity of black TiO2 nanowire arrays. Nanotechnology 2016;27:325401.
[52] Nowotny MK, Bak T, Nowotny J. Electrical properties and defect chemistry of TiO2 single crystal. I. electrical conductivity. J Phys Chem B 2006;110: 16270e82.
[53] Fukada K, Matsumoto M, Takeyasu K, Ogura S, Fukutani K. Effects of hydrogen on the electronic state and electric conductivity of the rutile TiO2 (110) surface. J. Phys. Soc. Japan 2015;84, 064716.
[54] Xia T, Zhang W, Li W, Oyler NA, Liu G, Chen X. Hydrogenated surface disorder enhances lithium ion battery performance. Nanomater Energy 2013;2: 826e35.
[55] Nechiyil D, Muruganathan M, Mizuta H, Ramaprabhu S. Theoretical insights into the experimental observation of stable p-type conductivity and ferromagnetic ordering in vacuum-hydrogenated TiO2. J Phys Chem C 2017;121:14359e66.
[56] Xia T, Li N, Zhang Y, Kruger MB, Murowchick J, Selloni A, et al. Directional heat dissipation across the interface in anatase-rutile nanocomposites. ACS Appl Mater Interfaces 2013;5:9883e90.
[57] van der Heide P. X-ray photoelectron spectroscopy: an introduction to principles and practices. John Wiley and Sons; 2011.
[58] Sun C, Jia Y, Yang XH, Yang HG, Yao X, Lu GQ, et al. Hydrogen incorporation and storage in well-defined nanocrystals of anatase titanium dioxide. J Phys Chem C 2011;115:25590e4.
[59] WeiW, Yaru N, Chunhua L, Zhongzi X. Hydrogenation of TiO2 nanosheets with exposed {001} facets for enhanced photocatalytc activity. RSC Adv 2012;2: 8286e8.
[60] Biesinger MC, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 2010;257:887e98.
[61] Kasap SO. Principles of electronic materials and devices. McGraw-Hill; 2018.
[62] Jarvis JB, Janezic MD, Riddle B, Holloway CL, Paulter NG, Blendell J. Dielectric and conductor-loss characterization and measurements on electronic packaging materials. NIST Tech. Note 2001;1520.
[63] Fox M, Bertsch GF. Optical properties of solids. Oxford University Press; 2010.
[64] Pozar D. Microwave engineering. John Wiley and Sons; 2011.
[65] Naito Y. About the thickness of the ferrite absorption wall. Inst. Electron. Inf. Commun. Eng. J. B J 1969;25eB:21e5.
[66] Naito Y, Yin J, Mizumoto T. Electromagnetic wave absorbing properties of carbon-rubber doped with ferrite. Electron. Commun. Japan (Part II Electron 1988;71:77e83.
[67] Yang W, Zhang Y, Qiao G, Lai Y, Liu S, Wang C, et al. Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17-xSix and their composites. Acta Mater 2018;145:331e6.
[68] Green M, Liu Z, Smedley R, Nawaz H, Li X, Huang F, et al. Graphitic carbon nitride nanosheets for microwave absorption. Mater. Today Phys. 2018;5: 78e86.
[69] Naito Y, Suetake K. Application of ferrite to electromagnetic wave absorber and its characteristics. Microwave Symposium Digest. G-MTT International 1970;70:273e8.
[70] Chapra SC, Canale RP. Numerical methods for engineers. McGraw-Hill; 2009.
[71] Matsumoto M, Miyata Y. Thin electromagnetic wave absorber for quasimicrowave band containing aligned thin magnetic metal particles. IEEE Trans Magn 1997;33:4459e64.
[72] Tian L, Yan X, Xu J, Wallenmeyer P, Murowchick J, Liu L, et al. Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles. J Mater Chem A 2015;3:12550e6.
[73] Dong J, Ullal R, Han J, Wei S, Ouyang X, Donga J, et al. Partially crystallized TiO2 for microwave absorption. J Mater Chem A 2015;3:5285e8.
[74] Guan L, Chen X. The photoexcited charge transport and accumulation in anatase TiO2. ACS Appl Energy Mater 2018;1:4313e20.

Memo

Memo:


Last Update: 2019-03-30