|Table of Contents|
[1].Intrinsic dielectric properties and vibration characteristics of La(Mg1/2Sn1/2)O3 ceramic[J].Journal of Materiomics,2019,(01):127-132.[doi:https://doi.org/10.1016/j.jmat.2018.11.008]
¡¡Chao Xing,Jianzhu Li,Hengyang Qiao,et al.Intrinsic dielectric properties and vibration characteristics of La(Mg1/2Sn1/2)O3 ceramic[J].Journal of Materiomics,2019,(01):127-132.[doi:https://doi.org/10.1016/j.jmat.2018.11.008]
Copy

Intrinsic dielectric properties and vibration characteristics of La(Mg1/2Sn1/2)O3 ceramic(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2019Äê01ÆÚ
Page:
127-132
Research Field:
Publishing date:
2019-03-30

Info

Title:
Intrinsic dielectric properties and vibration characteristics of La(Mg1/2Sn1/2)O3 ceramic
Highlights:
Chao Xing1Jianzhu Li1Hengyang QiaoHuiling ChenJing WangXunqian YinFeng Shi
School of Material Science & Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
Keywords:
Microwave dielectric ceramicDouble perovskiteCrystal structuresIntrinsic dielectric propertiesVibration characteristics
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.11.008
Abstract:
La(Mg1/2Sn1/2)O3 (LMS) ceramic was synthesized via the conventional solid-state reaction method. The main phase of the sample is LMS with a double perovskite structure (monoclinic P121/n1 symmetry), which is confirmed by X-ray diffraction. Scanning electron microscopy shows the sample is well-crystallized with dense and uniform grains as well as clear grain boundaries. The Raman scattering and Fourier transform far-infrared reflection spectroscopies were employed to analyze the lattice vibrational modes of the sample. The Raman active modes were fitted by the Lorentz function, and the lattice vibrational modes were assigned and illustrated accurately. The four-parameter semiquantum model was applied to simulate the intrinsic dielectric properties, which agree well with the data calculated from the microscopic polarizability & damping angles. The A1g(La) Raman mode in A-site has a great impact on the dielectric loss, and F3u(2) mode makes the largest contribution to the dielectric constant and the dielectric loss.

References:

[1] Chen YC, Li CH, Liu HX, Liu YC. Enhancing quality factor of Nd(Mg0.5Sn0.5)O3 ceramics by substituting Nd3? for Yb3?. Ceram Int 2014;40(8):13559e64.
[2] Xia CC, Jiang DH, Chen GH, Luo Y, Li B, Yuan CL, Zhou CR. Microwave dielectric ceramic of LiZnPO4 for LTCC applications. J Mater Sci Mater Electron 2017;28(4):1e6.
[3] Shi F, Yang J, Liu Q, Qi Z-M, Sun H. Crystal structure, lattice vibrational characteristic, and dielectric property of Nd(Mg1/2Sn1/2)O3 ceramic. Mater Chem Phys 2017;200:9e15.
[4] Chen H, Xing C, Li J, Qiao H, Yang J, He Q, Dong H, Wang J, Sun H, Qi ZM, Shi F. Crystal structure, phonon characteristic, and intrinsic properties of Sm(Mg1/ 2Sn1/2)O3 double perovskite ceramic. J Mater Sci Mater Electron 2017;28(19): 14156e62.
[5] Qiao H, Sun H, Li J, Chen H, Xing C, Yang J, Dong H, Wang J, Yin X, Qi ZM, Shi F. Structure, intrinsic properties and vibrational spectra of Pr(Mg1/2Sn1/2)O3 ceramic crystal. Sci Rep 2017;7(1):13336.
[6] Xing C, Li J, Chen H, Qiao H, Yang J, Dong H, Sun H, Wang J, Yin X, Qi Z-M, Shi F. Phonon characteristics, crystal structure, and intrinsic properties of a Y(Mg1/ 2Sn1/2)O3 ceramic. RSC Adv 2017;7(56):35305e10.
[7] Zhou D, Pang L-X, Wang D-W, Li C, Jin B-B, Reaney IM. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. J Mater Chem C 2017;5(38):10094e8.
[8] Shi F, Sun H, Wang J, Zhang J. Effects of calcining temperature on crystal structures, dielectric properties and lattice vibrational modes of Ba(Mg1/3Ta2/ 3)O3 ceramics. J Mater Sci Mater Electron 2016;27(5):5383e8.
[9] Wang YN, Chen MD. Improved microwave dielectric properties of La(Mg0.5Sn0.5)O3 ceramic with Sr2? substitution. J Mater Sci Mater Electron 2013;40(4e6):121e9.
[10] Chang YH. Influence of CuO additions and sintering temperature on microwave dielectric properties of La(Mg1/2Sn1/2)O3 ceramics. Ferroelectrics 2009;383(1):183e90.
[11] Babu GS, Subramanian V, Murthy VRK. Structure determination and microwave dielectric properties of La(MgSn)0.5O3 ceramics. J Eur Ceram Soc 2007;27(8):2973e6.
[12] Jiang S, Yue Z, Shi F. Effects of BaWO4 additive on Raman phonon modes and structureeproperty relationship of Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics. J Alloy Comp 2015;646:49e55.
[13] Diao C, Shi F. Correlation among dielectric properties, vibrational modes, and crystal structures in Ba[SnxZn(1ex)/3Nb2(1ex)/3]O3 solid solutions. J Phys Chem C 2012;116(12):6852e8.
[14] Zhang H, Diao C, Liu S, Jiang S, Jing X, Shi F. XRD and Raman study on crystal structures and dielectric properties of Ba[Mg(1 x)/3ZrxNb2(1 x)/3]O3 solid solutions. Ceram Int 2014;40(1):2427e34.
[15] Diao C-L, Wang C-H, Luo N-N, Qi Z-M, Shao T, Wang Y-Y, Lu J, Shi F, Jing X-P, Ching WY. First-principle calculation and assignment for vibrational spectra of Ba(Mg1/2W1/2)O3 microwave dielectric ceramic. J Am Ceram Soc 2013;96(9): 2898e905.
[16] Glazer AM. Simple ways of determining perovskite structures. Acta Crystallogr A Found Crystallogr 2010;31(6):756e62.
[17] Kroumova E, Aroyo MI, Perez-Mato JM, Kirov A, Capillas C, Ivantchev S, Wondratschek H. Bilbao crystallographic server : useful databases and tools for phase-transition studies. Phase Transitions 2003;76(1e2):155e70.
[18] Prosandeev SA, Waghmare U, Levin I, Maslar J. First-order Raman spectra of AB'1/2B''1/2O3 double perovskites. Phys Rev B 2005;(21):214307.
[19] Babu GS, Subramanian V, Murthy VRK, Lin IN, Chia CT, Liu HL. Far-infrared, Raman spectroscopy, and microwave dielectric properties of La(Mg0.5- Ti(0.5 x)Snx)O3 ceramics. J Appl Phys 2007;102(6):2063.
[20] Zheng H, Reaney IM, Gy€orgyfalva GDCCD, Ubic R, Yarwood J, Ferreira MPSVM. Raman spectroscopy of CaTiO3-based perovskite solid solutions. J Mater Res 2004;19(2):488e95.
[21] Shi F, Wang J, Sun H. Influence of annealing time on microstructure and dielectric properties of (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 ceramic thin films prepared by solegel method. J Mater Sci Mater Electron 2016;27(5):4607e12.
[22] Shannon RD. Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 1993;73(1):348e66.
[23] Zurm¨¹hlen R, Petzelt J, Kamba S, Voitsekhovskii VV, Colla E, Setter N. Dielectric spectroscopy of Ba(B¡¯1/2B'¡®1/2)O3 complex perovskite ceramics: correlations between ionic parameters and microwave dielectric properties. I. Infrared reflectivity study (1012e1014Hz). J Appl Phys 1995;77(10):5341e50.
[24] Wang C-H, Kuang X-J, Jing X-P, Lu J, L¨¹ X, Shao J. Far infrared reflection spectrum and IR-active modes of MgTiO3. J Appl Phys 2008;103(7), 074105.

Memo

Memo:


Last Update: 2019-03-30