|Table of Contents|
[1].Thermoelectric performance of Cu2Se bulk materials by high-temperature and high-pressure synthesis[J].Journal of Materiomics,2019,(01):103-110.[doi:https://doi.org/10.1016/j.jmat.2018.12.002]
 Lisha Xuea,Zhuangfei Zhanga,Weixia Shena,et al.Thermoelectric performance of Cu2Se bulk materials by high-temperature and high-pressure synthesis[J].Journal of Materiomics,2019,(01):103-110.[doi:https://doi.org/10.1016/j.jmat.2018.12.002]
Copy

Thermoelectric performance of Cu2Se bulk materials by high-temperature and high-pressure synthesis(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2019年01期
Page:
103-110
Research Field:
Publishing date:
2019-03-30

Info

Title:
Thermoelectric performance of Cu2Se bulk materials by high-temperature and high-pressure synthesis
Highlights:
Lisha XueaZhuangfei ZhangaWeixia ShenaHongan MabYuewen ZhangaChao FangaXiaopeng Jiaab
aKey Laboratory of Material Physics of the Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450052, China;bNational Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
Keywords:
Thermoelectric performanceHigh pressureCu2Se
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.12.002
Abstract:
Polycrystalline Cu2Se bulk materials were synthesized by high-pressure and high-temperature (HPHT) technique. The effects of synthetic temperature and pressure on the thermoelectric properties of Cu2Se materials were investigated. The results indicate that both synthetic temperature and pressure determine the microstructure and thermoelectric performance of Cu2Se compounds. The increase of synthetic temperature can effectively enhance the electrical conductivity and decrease the lattice thermal conductivity. A two-fold improvement in the power factor is obtained at synthetic temperature of 1000?°C compared to that obtained at room temperature. All β-Cu2Se samples exhibit low and temperature-independent lattice thermal conductivity ranging from 0.3 to 0.5 Wm?1K?1 due to the intrinsic superionic feature and the abundant lattice defects produced at high pressure. A maximum zT of 1.19?at 723?K was obtained for the sample synthesized at 3?GPa and 1000?°C. These findings indicate that HPHT technology is an efficient approach to synthesize Cu2Se-based bulk materials.

References:

[1] Zhang QH, Huang XY, Bai SQ, Shi X, Uher C, Chen LD. Thermoelectric devices for power generation: recent progress and future challenges. Adv Eng Mater 2016;18(2):194e213.
[2] Shi X, Chen LD. Thermoelectric materials step up. Nat Mater 2016;15:691e2.
[3] Stevels ALN, Jellinek F. Recueil 1971;111:273e83.
[4] Liu HL, Shi X, Kirkham M, Wang H, Li Q, Uher C, Zhang WQ, Chen LD. Structure- transformation-induced abnormal thermoelectric properties in semiconductor copper selenide. Mater Lett 2013;93:121e4.
[5] Danilkin SA, Avdeev M, Sakuma T, Macquart R, Ling CD. Neutron diffraction study of diffuse scattering in Cu2 dSe superionic compounds. J Alloy Comp 2011;509(18):5460e5.
[6] David RB, Day T, Borup KA, Christensen S, Iversen BB, Snyder GJ. Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides. Apl Mater 2013;1(5). 052107.
[7] Chi H, Kim H, Thomas JC, Shi GS, Sun K, Abeykoon M, Bozin ES, Shi XY, Li Q, Shi X, Kioupakis E, Ven AVd, Kaviany M, Uher C. Low-temperature structural and transport anomalies in Cu2Se. Phys Rev B 2014;89(19).
[8] Gulay L, Daszkiewicz M, Strok O, Pietraszko A. Crystal structure of Cu2Se. Chem. Met. Alloys 2011;4:200e5.
[9] Yang DW, Su XL, Yan YG, He J, Uher C, Tang XF. Mechanochemical synthesis of high thermoelectric performance bulk Cu2X (X?S, Se) materials. Apl Mater 2016;4(11):116110.
[10] Li D, Qin XY, Liu YF, Song CJ, Wang L, Zhang J, Xin HX, Guo GL, Zou TH, Sun GL, Ren BJ, Zhu XG. Chemical synthesis of nanostructured Cu2Se with high thermoelectric performance. RSC Adv 2014;4(17):8638.
[11] Yang L, Chen ZG, Han G, Hong M, Zou YC, Zou J. High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering. Nanomater Energy 2015;16:367e74.
[12] Zhao LL, Wang XL, Wang JY, Cheng ZX, Dou SX, Wang J, Liu LQ. Superior intrinsic thermoelectric performance with zT of 1.8 in single-crystal and meltquenched highly dense Cu(2-x)Se bulks. Sci Rep 2015;5:7671.
[13] Zhao LL, Islam Sheik MKN, Wang J, Cortie DL, Wang XG, Cheng ZX, Wang JY, Ye N, Dou SX, Shi X, Chen LD, Snyder GJ, Wang XL. Significant enhancement of figure-of-merit in carbon-reinforced Cu2Se nanocrystalline solids. Nanomater Energy 2017;41:164e71.
[14] Nunna R, Qiu PF, Yin MJ, Chen HY, Hanus R, Song QF, Zhang TS, Chou MY, Agne Matthias T, He JQ, Snyder GJ, Shi X, Chen LD. Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs. Energy Environ Sci 2017;10(9):1928e35.
[15] Olvera AA, Moroz NA, Sahoo P, Ren P, Bailey TP, Page AA, Uher C, Poudeu PFP. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ Sci 2017;10(7):1668e76.
[16] Ohtani T, Maruyama K, Ohshima K. Synthesis of copper, silver, and samarium chalcogenides by mechanical alloying. Mater Res Bull 1997;32(3):343e50.
[17] Lima JC, Machado KD, Grandi TA, Gasperini AAM, Campos CEM, Maurmann CE, Souza SM, Campos CEM. Structural study of Cu2-xSe alloys produced by mechanical alloying. Acta Crystallogr B 2004;60:282e6.
[18] Yu B, Liu WS, Chen S, Wang H, Wang HZ, Chen G, Ren ZF. Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. Nanomater Energy 2012;1:472e8.
[19] Liu KG, Liu H, Wang JY, Shi L. Synthesis and characterization of Cu2Se prepared by hydrothermal co-reduction. J Alloy Comp 2009;484:674e6.
[20] Kumar P, Singh K, Srivastava ON. Template free-solvothermaly synthesized copper selenide (CuSe, Cu2-xSe, b-Cu2Se and Cu2Se) hexagonal nanoplates from different precursors at low temperature. JCrystGrowth 2010;312: 2804e13.
[21] Xiao XX, Xie WJ, Tang XF, Zhang QJ. Phase transition and high temperature thermoelectric properties of copper selenide Cu2-xSe (0 x 0.25). Chin Phys B 2011;20, 087201.
[22] Skomorokhov AN, Trots DM, Knapp M, Bickulova NN, Fuess H. Structural behaviour of b-Cu2-dSe (d ? 0, 0.15, 0.25) in dependence on temperature studied by synchrotron powder diffraction. J.Alloy.Compd. 2006;421:64e71.
[23] Tyagi K, Gahtori B, Bathula S, Jaysimhadri M, Sharma S, Singh NK, Haranath D, Srivastava AK, Dhar A. Crystal structure and mechanical properties of spark plasma sintered Cu2Se: an efficient photovoltaic and thermoelectric material. Solid State Commun 2015;207:21e5.
[24] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008:1156446.
[25] Liu WS, Zhang QY, Lan YC, Chen S, Yan X, Zhang Q, Wang H, Wang DZ, Chen G, Ren ZF. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Advanced Energy Materials 2011;1:577e87.
[26] Hu LP, Zhu TJ, Wang YG, Xie HH, Xu ZJ, Zhao XB. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater 2014;6(2):e88.
[27] Liu WS, Zhang BP, Li JF, Zhang HL, Zhao LD. Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering. J Appl Phys 2007;102(10):103717.
[28] Polvani DA, Meng JF, Shekar NVC, Sharp J, Badding JV. Large improvement in thermoelectric properties in pressure-tuned p-type Sb1.5Bi0.5Te3. Chem Mater 2001;13:2068e71.
[29] Liu HL, Shi X, Xu FF, Zhang LL, Zhang WQ, Chen LD, Li Q, Uher C, Day T, Snyder GJ. Copper ion liquid-like thermoelectrics. Nat Mater 2012;11(5): 422e5.

Memo

Memo:


Last Update: 2019-03-30