|Table of Contents|
[1].Enhanced thermoelectric performance in p-type ZrCoSb based half-Heusler alloys employing nanostructuring and compositional modulation[J].Journal of Materiomics,2019,(01):94-102.[doi:https://doi.org/10.1016/j.jmat.2018.11.003]
 Nagendra S.Chau hana,b,Sivaiah Bathulaa,et al.Enhanced thermoelectric performance in p-type ZrCoSb based half-Heusler alloys employing nanostructuring and compositional modulation[J].Journal of Materiomics,2019,(01):94-102.[doi:https://doi.org/10.1016/j.jmat.2018.11.003]
Copy

Enhanced thermoelectric performance in p-type ZrCoSb based half-Heusler alloys employing nanostructuring and compositional modulation(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2019年01期
Page:
94-102
Research Field:
Publishing date:
2019-03-30

Info

Title:
Enhanced thermoelectric performance in p-type ZrCoSb based half-Heusler alloys employing nanostructuring and compositional modulation
Highlights:
Nagendra S.Chau hanabSivaiah BathulaabAvinash VishwakarmaabRuchi BhardwajabKishor Kumar JohariabBhasker GahtoriabAjay Dharab
aAcademy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory, New Delhi 110012, India;bDivision of Advanced Materials and Devices Metrology, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
Keywords:
Half HeuslersIso-electronicWaste heat recoveryMid-temperatureEfficiencyCompositional modulation
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.11.003
Abstract:
ZrCoSb based half-Heusler (HH) alloys have been widely studied as a p-type thermoelectric (TE) material for power generation applications in the mid-temperature regime. However, their intrinsically high thermal conductivity has been found to be detrimental for the improvement in their thermoelectric figure-of-merit (ZT), which presently is far below unity. In the current work, a state-of-the-art ZT ?1.1?at 873?K was realized in an optimized composition of nanostructured Zr1-xHfxCoSb0.9Sn0.1 HH alloys by employing compositional modulation i.e. grain-by-grain compositional variations, which leads to a substantial increase in its power factor coupled with a concurrent decrease in its thermal conductivity. Significant reduction in the phonon mean-free-path is observed on Hf substitution, which is comparable to the average crystallite size (?25?nm), thus leading to a very low thermal conductivity of ?2.2?W?m?1K?1?at 873?K, which is amongst the lowest reported in HH alloys. The TE device characteristics, estimated using cumulative temperature dependence model for quantitative evaluation of TE performance, yielded an output power density of ?10 Wcm?2 with a leg efficiency of ?10% in the optimized composition of nanostructured Zr1-xHfxCoSb0.9Sn0.1 HH alloys, which is comparable to the reported efficiencies of other state-of-the-art TE materials.

References:

[1] Gingerich DB, Mauter MS. Quantity, quality, and availability of waste heat from United States thermal power generation. Environ Sci Technol 2015;49: 8297e306.
[2] Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008;321:1457e61.
[3] LeBlanc S. Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustainable Materials and Technologies 2014;1:26e35.
[4] Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater 2008;7: 105e14.
[5] Zebarjadi M, Esfarjani K, Dresselhaus M, Ren Z, Chen G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ Sci 2012;5:5147e62.
[6] Kim HS, Liu W, Chen G, Chu C-W, Ren Z. Relationship between thermoelectric figure of merit and energy conversion efficiency. Proc Natl Acad Sci Unit States Am 2015;112:8205e10.
[7] Kim HS, Liu W, Ren Z. The bridge between the materials and devices of thermoelectric power generators. Energy Environ Sci 2017;10:69e85.
[8] Zhu T, Fu C, Xie H, Liu Y, Zhao X. High efficiency half-heusler thermoelectric materials for energy harvesting. Advanced Energy Materials 2015;5.
[9] Chen S, Ren Z. Recent progress of half-Heusler for moderate temperature thermoelectric applications. Mater Today 2013;16:387e95.
[10] Poon SJ, Wu D, Zhu S, Xie W, Tritt TM, Thomas P, Venkatasubramanian R. Half- Heusler phases and nanocomposites as emerging high-ZT thermoelectric materials. J Mater Res 2011;26:2795e802.
[11] Graf T, Felser C, Parkin SS. Simple rules for the understanding of Heusler compounds. Prog Solid State Chem 2011;39:1e50.
[12] Bos J-WG, Downie RA. Half-Heusler thermoelectrics: a complex class of materials. J Phys Condens Matter 2014;26:433201.
[13] Chauhan NS, Bathula S, Vishwakarma A, Bhardwaj R, Gahtori B, Kumar A, Dhar A. Vanadium doping induced resonant energy levels for the enhancement of thermoelectric performance in Hf-free ZrNiSn half-heusler alloys. ACS Appl Energy Mater 2018;1(2):757e64.
[14] Chen S, Lukas KC, Liu W, Opeil CP, Chen G, Ren Z. Effect of Hf concentration on thermoelectric properties of nanostructured N-type half-heusler materials HfxZr1exNiSn0. 99Sb0. 01. Advanced Energy Materials 2013;3:1210e4.
[15] Bhardwaj A, Chauhan N, Sancheti B, Pandey G, Senguttuvan T, Misra D. Panoscopically optimized thermoelectric performance of a half-Heusler/full- Heusler based in situ bulk composite Zr 0.7 Hf 0.3 Ni 1? x Sn: an energy and time efficient way. Phys Chem Chem Phys 2015;17:30090e101.
[16] Chauhan NS, Bathula S, Vishwakarma A, Bhardwaj R, Gahtori B, Srivastava AK, Saravanan M, Dhar A. A nanocomposite approach for enhancement of thermoelectric performance in Hafnium-free Half-Heuslers. Materialia 2018;1: 168e74.
[17] Chauhan NS, Bathula S, Vishwakarma A, Bhardwaj R, Johari KK, Gahtori B, Saravanan M, Dhar A. Compositional tuning of ZrNiSn half-Heusler alloys: thermoelectric characteristics and performance analysis. J Phys Chem Solid 2018;123:105e12.
[18] Bhattacharya S, Pope A, Littleton IV R, Tritt TM, Ponnambalam V, Xia Y, Poon S. Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn 1 x Sb x. Appl Phys Lett 2000;77:2476e8.
[19] Misra D, Rajput A, Bhardwaj A, Chauhan N, Singh S. Enhanced power factor and reduced thermal conductivity of a half-Heusler derivative Ti9Ni7Sn8: a bulk nanocomposite thermoelectric material. Appl Phys Lett 2015;106: 103901.
[20] Chauhan NS, Bhardwaj A, Senguttuvan T, Pant R, Mallik R, Misra D. A synergistic combination of atomic scale structural engineering and panoscopic approach in p-type ZrCoSb-based half-Heusler thermoelectric materials for achieving high ZT. J Mater Chem C 2016;4:5766e78.
[21] Yan X, Liu W, Chen S, Wang H, Zhang Q, Chen G, Ren Z. Thermoelectric property study of nanostructured p-type half-heuslers (Hf, Zr, Ti) CoSb0. 8Sn0. 2. Advanced Energy Materials 2013;3:1195e200.
[22] Chauhan NS, Bathula S, Vishwakarma A, Bhardwaj R, Johari KK, Gahtori B, Dhar A. Facile fabrication of p-and n-type half-Heusler alloys with enhanced thermoelectric performance and low specific contact resistance employing spark plasma sintering. Mater Lett 2018;228:250e3.
[23] Yan X, Liu W, Wang H, Chen S, Shiomi J, Esfarjani K, Wang H, Wang D, Chen G, Ren Z. Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf 1 x Ti x CoSb 0.8 Sn 0.2. Energy Environ Sci 2012;5:7543e8.
[24] Joshi G, He R, Engber M, Samsonidze G, Pantha T, Dahal E, Dahal K, Yang J, Lan Y, Kozinsky B. NbFeSb-based p-type half-Heuslers for power generation applications. Energy Environ Sci 2014;7:4070e6.
[25] Sekimoto T, Kurosaki K, Muta H, Yamanaka S. High-thermoelectric figure of merit realized in p-type half-Heusler compounds: ZrCoSnxSb1-x. Jpn J Appl Phys 2007;46:L673.
[26] Rausch E, Balke B, Ouardi S, Felser C. Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf) CoSb 0.8 Sn 0.2 system via phase separation. Phys Chem Chem Phys 2014;16:25258e62.
[27] Culp SR, Simonson J, Poon SJ, Ponnambalam V, Edwards J, Tritt TM. (Zr, Hf) Co (Sb, Sn) half-Heusler phases as high-temperature (> 700 C) p-type thermoelectric materials. Appl Phys Lett 2008;93, 022105.
[28] Takas NJ, Shabetai MR, Poudeu PF. Effect of Sn doping on the thermoelectric performance of the complex p-type Zr0. 5Hf0. 5Co0. 3Ir0. 7Sb1eySn y halfheusler system. Sci Adv Mater 2011;3:571e6.
[29] Maji P, Takas NJ, Misra DK, Gabrisch H, Stokes K, Poudeu PF. Effects of Rh on the thermoelectric performance of the p-type Zr 0.5 Hf 0.5 Co 1 xRhxSb 0.99 Sn 0.01 half-Heusler alloys. J Solid State Chem 2010;183:1120e6.
[30] Hsu C-C, Ma H-K. Microstructure and thermoelectric properties in Fe-doped ZrCoSb half-Heusler compounds. Mater Sci Eng, B 2015;198:80e5.
[31] Yuan B, Wang B, Huang L, Lei X, Zhao L, Wang C, Zhang Q. Effects of Sb substitution by Sn on the thermoelectric properties of ZrCoSb. J Electron Mater 2017;46:3076e82.
[32] He R, Kim HS, Lan Y, Wang D, Chen S, Ren Z. Investigating the thermoelectric properties of p-type half-Heusler Hf x (ZrTi) 1 x CoSb 0.8 Sn 0.2 by reducing Hf concentration for power generation. RSC Adv 2014;4:64711e6.
[33] Yan X, Joshi G, Liu W, Lan Y, Wang H, Lee S, Simonson J, Poon S, Tritt T, Chen G. Enhanced thermoelectric figure of merit of p-type half-Heuslers. Nano Lett 2010;11:556e60.
[34] Zhou X, Yan Y, Lu X, Zhu H, Han X, Chen G, Ren Z. Routes for highperformance thermoelectric materials, Materials Today 2018.
[35] Berry T, Fu C, Auffermann G, Fecher GH, Schnelle W, Serrano-Sanchez F, Yue Y, Liang H, Felser C. Enhancing thermoelectric performance of TiNiSn halfheusler compounds via modulation doping. Chem Mater 2017;29:7042e8.
[36] Wang J, Zhang B-Y, Kang H-J, Li Y, Yaer X, Li J-F, Tan Q, Zhang S, Fan G-H, Liu CY. Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping. Nanomater Energy 2017;35:387e95.
[37] Williamson G, Hall W. X-ray line broadening from filed aluminium and wolfram. Acta Metall 1953;1:22e31.
[38] Yu B, Zebarjadi M, Wang H, Lukas K, Wang H, Wang D, Opeil C, Dresselhaus M, Chen G, Ren Z. Enhancement of thermoelectric properties by modulationdoping in silicon germanium alloy nanocomposites. Nano Lett 2012;12: 2077e82.
[39] Pei Y-L, Wu H, Wu D, Zheng F, He J. High thermoelectric performance realized in a BiCuSeO system by improving Carrier mobility through 3D modulation doping. J Am Chem Soc 2014;136:13902e8.
[40] Zhu T, Gao H, Chen Y, Zhao X. IoffeeRegel limit and lattice thermal conductivity reduction of high performance (AgSbTe 2) 15 (GeTe) 85 thermoelectric materials. J Mater Chem 2014;2:3251e6.
[41] Kim H-S, Gibbs ZM, Tang Y, Wang H, Snyder GJ. Characterization of Lorenz number with Seebeck coefficient measurement. Apl Mater 2015;3, 041506.
[42] Cahill DG, Braun PV, Chen G, Clarke DR, Fan S, Goodson KE, Keblinski P, King WP, Mahan GD, Majumdar A. Nanoscale thermal transport. II. 2003e2012. Appl Phys Rev 2014;1, 011305.
[43] Kittel C. Interpretation of the thermal conductivity of glasses. Phys Rev 1949;75:972.
[44] Zhu T, Fu C, Xie H, Liu Y, Feng B, Xie J, Zhao X. Lattice thermal conductivity and spectral phonon scattering in FeVSb-based half-Heusler compounds. EPL (Europhysics Letters) 2013;104:46003.
[45] Hermet P, Jund P. Lattice thermal conductivity of NiTiSn half-Heusler thermoelectric materials from first-principles calculations. J Alloy Comp 2016;688:248e52.
[46] Sharp J, Poon S, Goldsmid H. Boundary scattering and the thermoelectric figure of merit. Phys Status Solidi 2001;187:507e16.
[47] Bhattacharya S, Skove M, Russell M, Tritt T, Xia Y, Ponnambalam V, Poon S, Thadhani N. Effect of boundary scattering on the thermal conductivity of TiNiSn-based half-Heusler alloys. Phys Rev B 2008;77:184203.
[48] Fu C, Liu Y, Xie H, Liu X, Zhao X, Jeffrey Snyder G, Xie J, Zhu T. Electron and phonon transport in Co-doped FeV0. 6Nb0. 4Sb half-Heusler thermoelectric materials. J Appl Phys 2013;114:134905.
[49] Rausch E, Balke B, Stahlhofen JM, Ouardi S, Burkhardt U, Felser C. Fine tuning of thermoelectric performance in phase-separated half-Heusler compounds. J Mater Chem C 2015;3:10409e14.
[50] Fu C, Zhu T, Liu Y, Xie H, Zhao X. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT> 1. Energy Environ Sci 2015;8:216e20.
[51] Fu C, Zhu T, Pei Y, Xie H, Wang H, Snyder GJ, Liu Y, Liu Y, Zhao X. High band degeneracy contributes to high thermoelectric performance in p-type halfheusler compounds. Advanced Energy Materials 2014;4.
[52] Yu J, Fu C, Liu Y, Xia K, Aydemir U, Chasapis TC, Snyder GJ, Zhao X, Zhu T. Unique role of refractory Ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials. Advanced Energy Materials 2018;8: 1701313.
[53] Bathula S, Jayasimhadri M, Gahtori B, Singh NK, Tyagi K, Srivastava A, Dhar A. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys. Nanoscale 2015;7:12474e83.
[54] Prasad KS, Rao A, Tyagi K, Chauhan NS, Gahtori B, Bathula S, Dhar A. Enhanced thermoelectric performance of Pb doped Cu2SnSe3 synthesized employing spark plasma sintering. Phys B Condens Matter 2017;512:39e44.
[55] Prasad KS, Rao A, Chauhan NS, Bhardwaj R, Vishwakarma A, Tyagi K. Thermoelectric properties of p-type sb-doped Cu2SnSe3 near room and mid temperature applications. Appl Phys A 2018;124:98.
[56] Upadhyay NK, Kumaraswamidhas L, Gahtori B, Bathula S, Muthiah S, Shyam R, Chauhan NS, Bhardwaj R, Dhar A. Enhancement in thermoelectric performance of bulk CrSi 2 dispersed with nanostructured SiGe nanoinclusions. J Alloy Comp 2018;765:412e7.
[57] He R, Kraemer D, Mao J, Zeng L, Jie Q, Lan Y, Li C, Shuai J, Kim HS, Liu Y. Achieving high power factor and output power density in p-type half- Heuslers Nb1-xTixFeSb. Proc Natl Acad Sci Unit States Am 2016;113: 13576e81.
[58] Snyder GJ, Ursell TS. Thermoelectric efficiency and compatibility. Phys Rev Lett 2003;91:148301.
[59] Snyder GJ, Caillat T. Using the compatibility factor to design high efficiency segmented thermoelectric generators. In: MRS Online Proceedings Library Archive; 2003. p. 793.

Memo

Memo:


Last Update: 2019-03-30