|Table of Contents|
[1].Influence of Bi on the thermoelectric properties of SrTiO3-d[J].Journal of Materiomics,2019,(01):88-93.[doi:https://doi.org/10.1016/j.jmat.2018.12.004]
¡¡Cong Chena,b,Mohamed Bousninaa,et al.Influence of Bi on the thermoelectric properties of SrTiO3-d[J].Journal of Materiomics,2019,(01):88-93.[doi:https://doi.org/10.1016/j.jmat.2018.12.004]
Copy

Influence of Bi on the thermoelectric properties of SrTiO3-d(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2019Äê01ÆÚ
Page:
88-93
Research Field:
Publishing date:
2019-03-30

Info

Title:
Influence of Bi on the thermoelectric properties of SrTiO3-d
Highlights:
Cong ChenabMohamed BousninaaFabien GiovannelliaFabian Delormea
aUniversit¨¦ de Tours, CNRS, INSA CVL, GREMAN UMR 7347, IUT de Blois, 15 rue de la chocolaterie, CS 2903, 41029, Blois Cedex, France;bBundesanstalt f¨¹r Materialforschung und -pr¨¹fung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
Keywords:
ThermoelectricsSrTiO3CompositeBiMagn¨¦li phase
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.12.004
Abstract:
The thermoelectric properties of Sr1-xBixTiO3-¦Ä (0?¡Ü?x?¡Ü?0.07) have been investigated. Dense ceramics of Sr1-xBixTiO3-¦Ä and Sr0.95TiO3-¦Ä have been prepared by solid-state reaction and conventional sintering in air followed by annealing in a reducing atmosphere. XRD and SEM analyses show that the rutile TiO2 in Sr0.95TiO3 formed after sintering becomes Magn¨¦li phase of TinO2n-1 after annealing. Moreover, Bi resolves from Sr1-xBixTiO3 after annealing, resulting in the formation of Sr1-xBixTiO3-¦Ä/Bi/TinO2n-1 composites. With increasing Bi content in Sr1-xBixTiO3-¦Ä, the electrical conductivity increases while the absolute values of the Seebeck coefficient decrease as a result of increasing carrier concentration. The thermal conductivity of SrTiO3-¦Ä is reduced by doping Bi up to x?=?0.07. Highest ZT ?0.13 is obtained in Sr0.93Bi0.07TiO3-¦Ä at 1000?K.

References:

[1] Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 1997;56(20):R12685e7.
[2] Masset AC, Michel C, Maignan A, Hervieu M, Toulemonde O, Studer F, Raveau B, Hejtmanek J. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys Rev B 2000;62(1):166e75.
[3] Shikano M, Funahashi R. Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl Phys Lett 2003;82(12): 1851e3.
[4] Delorme F, Martin CF, Marudhachalam P, Ovono Ovono D, Guzman G. Effect of Ca substitution by Sr on the thermoelectric properties of Ca3Co4O9 ceramics. J Alloy Comp 2011;509(5):2311e5.
[5] Chen C, Zhang T, Donelson R, Chu D, Tian R, Tan TT, Li S. Thermopower and chemical stability of Na0.77CoO2/Ca3Co4O9 composites. Acta Mater 2014;63: 99e106.
[6] Delorme F, Chen C, Pignon B, Schoenstein F, Perriere L, Giovannelli F. Promising high temperature thermoelectric properties of dense Ba2Co9O14 ceramics. J Eur Ceram Soc 2017;37(7):2615e20.
[7] Androulakis J, Migiakis P, Giapintzakis J. La0.95Sr0.05CoO3: An efficient roomtemperature thermoelectric oxide. Appl Phys Lett 2004;84(7):1099e101.
[8] Kozuka H, Yamagiwa K, Ohbayashi K, Koumoto K. Origin of high electrical conductivity in alkaline-earth doped LaCoO3. J Mater Chem 2012;22(22): 11003e5.
[9] Chen C, Giovannelli F, Chartier T, Delorme F. Synthesis and thermoelectric properties of doubly substituted La0.95Sr0.05Co1-xCrxO3 (0 x 0.5). Mater Res Bull 2018;102:257e61.
[10] Bousnina MA, Dujardin R, Perriere L, Giovannelli F, Guegan G, Delorme F. Synthesis, sintering, and thermoelectric properties of the solid solution La1exSrxCoO3¡Àd (0 x 1). J Adv Ceram 2018;7(2):160e8.
[11] Okuda T, Nakanishi K, Miyasaka S, Tokura Y. Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3 (0 x 0.1). Phys Rev B 2001;63(11): 113104.
[12] Chen C, Zhang T, Donelson R, Tan TT, Li S. Effects of yttrium substitution and oxygen deficiency on the crystal phase, microstructure, and thermoelectric properties of Sr1 1.5xYxTiO3 d (0 x 0.15). J Alloy Comp 2015;629:49e54.
[13] Kovalevsky AV, Aguirre MH, Populoh S, Patr¨ªcio SG, Ferreira NM, Mikhalev SM, Fagg DP, Weidenkaff A, Frade JR. Designing strontium titanate-based thermoelectrics: insight into defect chemistry mechanisms. J Mater Chem 2017;5(8):3909e22.
[14] Flahaut D, Mihara T, Funahashi R, Nabeshima N, Lee K, Ohta H, Koumoto K. Thermoelectrical properties of A-site substituted Ca1-xRexMnO3 system. J Appl Phys 2006;100(8):4.
[15] Ohtaki M, Tsubota T, Eguchi K, Arai H. High-temperature thermoelectric properties of (Zn1-xAlx)O. J Appl Phys 1996;79(3):1816e8.
[16] Giovannelli F, Chen C, D¨ªaz-Chao P, Guilmeau E, Delorme F. Thermal conductivity and stability of Al-doped ZnO nanostructured ceramics. J Eur Ceram Soc 2018;38(15):5015e20.
[17] Ohta S, Nomura T, Ohta H, Koumoto K. High-temperature Carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J Appl Phys 2005;97(3):034106.
[18] Zhang L, Tosh T, Okinaka N, Akiyama T. Thermoelectric properties of combustion synthesized and spark plasma sintered Sr1-xRxTiO3 (R ? Y, La, Sm, Gd, Dy, 0 < x [19] Liu J, Wang CL, Li Y, Su WB, Zhu YH, Li JC, Mei LM. Influence of rare earth doping on thermoelectric properties of SrTiO3 ceramics. J Appl Phys 2013;114(22).
[20] Dehkordi AM, Bhattacharya S, He J, Alshareef HN, Tritt TM. Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO3- delta ceramics originating from nonuniform distribution of Pr dopants. Appl Phys Lett 2014;104(19).
[21] Chen C, Zhang T, Donelson R, Tan TT, Li S. Effects of yttrium substitution and oxygen deficiency on the crystal phase, microstructure, and thermoelectric properties of Sr1 1.5xYxTiO3 d (0 x 0.15). J Alloy Comp 2015;629: 49e54.
[22] Wang HC, Wang CL, Su WB, Liu J, Sun Y, Peng H, Mei LM. Doping effect of La and Dy on the thermoelectric properties of SrTiO3. J Am Ceram Soc 2011;94(3):838e42.
[23] Kovalevsky AV, Yaremchenko AA, Populoh S, Weidenkaff A, Frade JR. Effect of A-site cation deficiency on the thermoelectric performance of donorsubstituted strontium titanate. J Phys Chem C 2014;118(9):4596e606.
[24] Bhattacharya S, Dehkordi AM, Tennakoon S, Adebisi R, Gladden JR, Darroudi T, Alshareef HN, Tritt TM. Role of phonon scattering by elastic strain field in thermoelectric Sr1-xYxTiO3-delta. J Appl Phys 2014;115(22).
[25] Zhang B, Wang J, Zou T, Zhang S, Yaer X, Ding N, Liu C, Miao L, Li Y, Wu Y. High thermoelectric performance of Nb-doped SrTiO3 bulk materials with different doping levels. J Mater Chem C 2015;3(43):11406e11.
[26] Lu Z, Zhang H, Lei W, Sinclair DC, Reaney IM. High-Figure-of-Merit thermoelectric La-doped A-site-deficient SrTiO3 ceramics. Chem Mater 2016;28(3): 925e35.
[27] Srivastava D, Norman C, Azough F, Sch€afer MC, Guilmeau E, Freer R. Improving the thermoelectric properties of SrTiO3-based ceramics with metallic inclusions. J Alloy Comp 2018;731:723e30.
[28] Park K, Son JS, Woo SI, Shin K, Oh M-W, Park S-D, Hyeon T. Colloidal synthesis and thermoelectric properties of La-doped SrTiO3 nanoparticles. J Mater Chem 2014;2(12):4217e24.
[29] Wang N, Chen H, He H, Norimatsu W, Kusunoki M, Koumoto K. Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci Rep 2013;3.
[30] Wang J, Zhang B-Y, Kang H-J, Li Y, Yaer X, Li J-F, Tan Q, Zhang S, Fan G-H, Liu CY, Miao L, Nan D, Wang T-M, Zhao L-D. Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping. Nano Energy 2017;35:387e95.
[31] Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat Mater 2007;6(2):129e34.
[32] Lee KH, Kim SW, Ohta H, Koumoto K. Ruddlesden-Popper phases as thermoelectric oxides: Nb-doped SrO(SrTiO3)n (n? 1, 2). J Appl Phys 2006;100(6): 063717.
[33] Wang Y, Wan C, Zhang X, Shen L, Koumoto K, Gupta A, Bao N. Influence of excess SrO on the thermoelectric properties of heavily doped SrTiO3 ceramics. Appl Phys Lett 2013;102(18):183905.
[34] Gong C, Dong G, Hu J, Chen Y, Qin M, Yang S, Gao F. Effect of reducing annealing on the microstructure and thermoelectric properties of LaeBi codoped SrTiO3 ceramics. J Mater Sci Mater Electron 2017;28(19):14893e900.
[35] Rodr¨ªguez-Carvajal J. Recent developments of the program FULLPROF. Comm Powder Diffr (IUCr). Newsletter 2001;26:12e9.
[36] Boston R, Schmidt WL, Lewin GD, Iyasara AC, Lu Z, Zhang H, Sinclair DC, Reaney IM. Protocols for the fabrication, characterization, and optimization of n-type thermoelectric ceramic oxides. Chem Mater 2017;29(1):265e80.
[37] Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 1976;32(5): 751e67.
[38] Shimakawa Y, Kubo Y. Degradation of ferroelectric SrBi2Ta2O9 materials under reducing conditions and their reaction with Pt electrodes. Appl Phys Lett 1999;75(18):2839e41.
[39] Blennow P, Hansen KK, Reine Wallenberg L, Mogensen M. Effects of Sr/Ti-ratio in SrTiO3-based SOFC anodes investigated by the use of cone-shaped electrodes. Electrochim Acta 2006;52(4):1651e61.
[40] Harada S, Tanaka K, Inui H. Thermoelectric properties and crystallographic shear structures in titanium oxides of the Magn eli phases. J Appl Phys 2010;108(8):083703.
[41] Portehault D, Maneeratana V, Candolfi C, Oeschler N, Veremchuk I, Grin Y, Sanchez C, Antonietti M. Facile general route toward tunable Magn eli nanostructures and their use as thermoelectric metal oxide/carbon nanocomposites. ACS Nano 2011;5(11):9052e61.
[42] Spinelli A, Torija MA, Liu C, Jan C, Leighton C. Electronic transport in doped SrTiO3: Conduction mechanisms and potential applications. Phys Rev B 2010;81(15):155110.
[43] Liu J, Wang CL, Su WB, Wang HC, Zheng P, Li JC, Zhang JL, Mei LM. Enhancement of thermoelectric efficiency in oxygen-deficient Sr1 xLaxTiO3 d ceramics. Appl Phys Lett 2009;95(16):162110.
[44] Lyeo H-K, Cahill DG. Thermal conductance of interfaces between highly dissimilar materials. Phys Rev B 2006;73(14):144301.
[45] Duran A, Morales F, Fuentes L, Siqueiros JM. Specific heat anomalies at 37, 105 and 455 K in SrTiO3: Pr. J Phys Condens Matter 2008;20(8).
[46] Traylor JG, Smith HG, Nicklow RM, Wilkinson MK. Lattice dynamics of rutile. Phys Rev B 1971;3(10):3457e72.

Memo

Memo:


Last Update: 2019-03-30