|Table of Contents|
[1].Pressure induced convergence of conduction bands in Al doped Mg2Si: Experiment and theory[J].Journal of Materiomics,2019,(01):81-87.[doi:https://doi.org/10.1016/j.jmat.2018.11.002]
 Jialiang Lia,Xiaolian Zhanga,Bo Duana,et al.Pressure induced convergence of conduction bands in Al doped Mg2Si: Experiment and theory[J].Journal of Materiomics,2019,(01):81-87.[doi:https://doi.org/10.1016/j.jmat.2018.11.002]
Copy

Pressure induced convergence of conduction bands in Al doped Mg2Si: Experiment and theory(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2019年01期
Page:
81-87
Research Field:
Publishing date:
2019-03-30

Info

Title:
Pressure induced convergence of conduction bands in Al doped Mg2Si: Experiment and theory
Highlights:
Jialiang Lia1Xiaolian Zhanga1Bo DuanaYunlong CuiaHoujiang YangaHongtao WangaJunchao LiaXiaojun HubGang ChenaPengcheng Zhaiac
a Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China;b High Pressure High Temperature Institute of Physics, Wuhan University of Technology, Wuhan, 430070, China;c State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
Keywords:
Mg2SiHigh-pressure synthesisBand degeneracyThermoelectric materials
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.11.002
Abstract:
High-pressure and high-temperature (HPHT) synthesis provides an effective way to tune the band structure of materials and improve their electronic properties. To investigate the influence of synthesis pressure on electronic properties, Mg1.97Al0.03Si samples were synthesized using the HPHT method. The maximum effective mass 0.92me is obtained for the sample prepared with the synthesis pressure of 3?GPa, leading to the biggest Seebeck coefficient ?201.3?μV/K at room temperature. Meanwhile, the 3?GPa sample obtains the higher electron carrier concentration and electrical conductivity, resulting in nearly overall enhancement of power factor. The Density Functional Theory (DFT) calculations evidences that the Conduction Bands Minimum (CBM) can be tuned effectively by applied pressure and the convergence of the CBM leads to a larger effective mass of DOS, which are beneficial to the enhancement of power factors. These results indicate that high-pressure is a powerful tool to tune Mg1.97Al0.03Si band structures.

References:

[1] Wang Y, Chen X, Cui T, Niu YL, Wang YC, Wang M, et al. Enhanced thermoelectric performance of PbTe within the orthorhombic Pnma phase. Phys Rev B 2007;76(15):155127.
[2] Ovsyannikov SV, Shchennikov VV. Pressure-tuned colossal improvement of thermoelectric efficiency of PbTe. Appl Phys Lett 2007;90(12):122103.
[3] Polvani DA. Large improvement in thermoelectric properties in pressure tuned p-type Sb1.5Bi0.5Te3. Chem Mater 2001;13:2068e71.
[4] Su T, He C, Li H, Guo X, Li S, Ma H, et al. Fast preparation and low-temperature thermoelectric properties of CoSb3. J Electron Mater 2012;42(1):109e13.
[5] Cutler M, Mott NF. Observation of anderson localization in an electron gas. Phys Rev 1969;181(3):1336e40.
[6] Heremans JP, Thrush CM, Morelli DT. Thermopower enhancement in lead telluride nanostructures. Phys Rev B 2004;70(11):115334.
[7] Faleev SV, L eonard F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys Rev B 2008;77(21):214304.
[8] Pei YZ, Shi X, LaLonde A, Wang H, Chen LD, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011;473(7345):66e9.
[9] Zhang X, Zhao LD. Thermoelectric materials: energy conversion between heat and electricity. J Materiomics 2015;1(2):92e105.
[10] Liu W, Tan XJ, Yin K, Liu HJ, Tang XF, Shi J, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1- xSnx solid solutions. Phys Rev Lett 2012;108(16):166601.
[11] Liu BW, Ma HA, Huo DX, Liu HQ, Liu BM, Chen JX, et al. Thermoelectric properties of In-substituted Ge-based clathrates prepared by HPHT. J Materiomics 2018;4(1):68e74.
[12] Zhang LJ, Wang YC, Lv J, Ma YM. Materials discovery at high pressures. Nature Rev Mater 2017;2(4):17005.
[13] Serrano F, Gharsallah M, Cherif W, Martínez JL, Cascos V, Troncoso L, et al. Facile preparation of state-of-the art thermoelectric materials by highpressure synthesis. Mater Today Proc 2015;2(2):661e8.
[14] Nolas GS, Takizawa H, Endo T, Sellinschegg H, Johnson DC. Thermoelectric properties of Sn-filled skutterudites. Appl Phys Lett 2000;77(1):52e4.
[15] Zhang J, Xu B, Wang LM, Yu DL, Yang JQ, Yu FR, et al. High-pressure synthesis of phonon-glass electron-crystal featured thermoelectric LixCo4Sb12. Acta Mater 2012;60(3):1246e51.
[16] Prado-Gonjal J, Serrano-S anchez F, Nemes NM, Dura OJ, Martínez JL, Fern andez- Díaz MT, et al. Extra-low thermal conductivity in unfilled CoSb3-d skutterudite synthesized under high-pressure conditions. Appl Phys Lett 2017;111(8):083902.
[17] Ji SD, Tanaka M, Zhang S, Yamanaka S. High pressure synthesis and superconductivity of the ternary compounds Mg(Mg1-xAlx)Si with the anticotunnite structure. Inorg Chem 2012;51(19):10300e5.
[18] Ji SD, Imai M, Zhu HK, Yamanaka S. Structural characterization of magnesiumbased compounds Mg9Si5 and Mg4Si3Al (superconductor) synthesized under high pressure and high temperature conditions. Inorg Chem 2013;52(7): 3953e61.
[19] Tani J-i, Kido H. Thermoelectric properties of Bi-doped Mg2Si semiconductors. Phys B Condens Matter 2005;364(1e4):218e24.
[20] Nolas GS, Wang D, Beekman M. Transport properties of polycrystalline Mg2Si1 ySby (0 y<0.4). Phys Rev B 2007;76(23):235204.
[21] Jung JY, Kim IH. Solid-state synthesis of Te-doped Mg2Si. J Electron Mater 2011;40(5):1144e9.
[22] Hu XK, Mayson D, Barnett MR. Synthesis of Mg2Si for thermoelectric applications using magnesium alloy and spark plasma sintering. J Alloy Comp 2014;589:485e90.
[23] Battiston S, Fiameni S, Saleemi M, Boldrini S, Famengo A, Agresti F, et al. Synthesis and characterization of Al doped Mg2Si thermoelectric materials. J Electron Mater 2013;42(7):1956e9.
[24] Arai K, Sasaki A, Kimori Y, Iida M, Nakamura T, Yamaguchi Y, et al. Thermoelectric properties of Sb-doped Mg2(Si0.95Ge0.05) synthesized by spark plasma sintering. Mater Sci Eng B 2015;195:45e9.
[25] Morozova NV, Ovsyannikov SV, Korobeinikov IV, Karkin AE, Takarabe K-i, Mori Y, et al. Significant enhancement of thermoelectric properties and metallization of Al-doped Mg2Si under pressure. J Appl Phys 2014;115(21): 213705.
[26] Hao J, Zou B, Zhu PW, Gao CX, Li YW, Liu D, et al. In situ X-ray observation of phase transitions in under high pressure. Solid State Commun 2009;149(17e18):689e92.
[27] Hao JH, Guo ZG, Jin QH. First principles calculation of structural phase transformation in Mg2Si at high pressure. Solid State Commun 2010;150(47e48):2299e302.
[28] Yu F, Sun JX, Yang W, Tian RG, Ji GF. A study of the phase transitions, electronic structures and optical properties of under high pressure. Solid State Commun 2010;150(13e14):620e4.
[29] Ren WB, Han YH, Liu CL, Su NN, Li Y, Ma BH, et al. Pressure-induced semiconductoremetal phase transition in Mg2Si. Solid State Commun 2012;152(5):440e2.
[30] Zhao JB, Liu ZX, Gordon RA, Takarabe K, Reid J, Tse JS. Pressure-induced phase transition and electrical properties of thermoelectric Al-doped Mg2Si. J Appl Phys 2015;118(14):145902.
[31] You S-W, Park K-H, Kim I-H, Choi S-M, Seo W-S, Kim S-U. Solid-state synthesis and thermoelectric properties of Al-doped Mg2Si. J Electron Mater 2011;41(6):1675e9.
[32] Farahi N, VanZant M, Zhao JB, Tse JS, Prabhudev S, Botton GA, et al. Sb- and Bidoped Mg2Si: location of the dopants, micro- and nanostructures, electronic structures and thermoelectric properties. Dalton Trans 2014;43(40): 14983e91.
[33] Liu XH, Xi LL, Qiu WJ, Yang J, Zhu TJ, Zhao XB, et al. Significant roles of intrinsic point defects in Mg2X (X? Si, Ge, Sn) thermoelectric materials. Adv Electron Mater 2016;2(2):1500284.
[34] Thonhauser T, Scheidemantel TJ, Sofo JO, Badding JV, Mahan GD. Thermoelectric properties of Sb2Te3 under pressure and uniaxial stress. Phys Rev B 2003;68(8).
[35] Balout H, Boulet P, Record MC. Electronic and transport properties of Mg2Si under isotropic strains. Intermetallics 2014;50:8e13.
[36] Lv HY, Lu WJ, Shao DF, Sun YP. Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Phys Rev B 2014;90(8).
[37] Pandey T,K, Singh A. Simultaneous enhancement of electrical conductivity and thermopower in Bi2S3 under hydrostatic pressure. J Mater Chem C 2016;4(10):1979e87.
[38] Kaur K, Dhiman S, Kumar R. Strain engineering on thermoelectric performance of Mg2Si. Mater Res Express 2017;4(7):075509.
[39] Hu CZ, Ni P, Zhan L, Zhao HJ, He J, Tritt T M, et al. Theoretical investigations of electrical transport properties in CoSb3 skutterudites under hydrostatic loadings. Rare Met 2018;37(4):316e25.
[40] Deng L, Ma H, Su T, Jiang Y, Zheng S, Jia X. Thermoelectric properties of Ti0.2Co4Sb11.5Te0.5 prepared by HPHT. J Alloy Comp 2011;509(5):2392e4.
[41] Zhao LD, Wu HJ, Hao SQ, Wu CI, Zhou XY, Biswas K, et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ Sci 2013;6(11):3346.
[42] Xin JZ, Wu HJ, Liu XH, Zhu TJ, Yu GT, Zhao XB. Mg vacancy and dislocation strains as strong phonon scatterers in Mg2Si1 xSbx thermoelectric materials. Nanomater Energy 2017;34:428e36.

Memo

Memo:


Last Update: 2019-03-30