|Table of Contents|
[1].The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications[J].Journal of Materiomics,2019,(01):73-80.[doi:https://doi.org/10.1016/j.jmat.2018.10.001]
 Feifei Chena,Lingfeng Kongb,Wei Songc,et al.The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications[J].Journal of Materiomics,2019,(01):73-80.[doi:https://doi.org/10.1016/j.jmat.2018.10.001]
Copy

The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2019年01期
Page:
73-80
Research Field:
Publishing date:
2019-03-30

Info

Title:
The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications
Highlights:
Feifei ChenaLingfeng KongbWei SongcChao JiangaShiwei TianaFapeng YuaLifeng QinbChunlei WangdXian Zhaoa
aState Key Laboratory of Crystal Materials and Advanced Research Center for Optics of Shandong University, China;bDepartment of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, China;cCETC Deqing Huaying Electronics Co., Ltd, China;dSchool of Physics, Shandong University, Jinan, 250100, China
Keywords:
LiNbO3Radial extensional modeThickness extensional modeTemperature stability
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.10.001
Abstract:
Lithium niobate (LiNbO3, LN) crystal is a multi-functional material with favorable piezoelectric, nonlinear optical and electro-optic properties. In this study, the electromechanical properties of the radial extensional (RE) and the thickness extensional (TE) modes of the congruent LN are studied and the temperature dependent behaviors are revealed. The RE mode electromechanical coupling factors (kp) for the Y- and Z-oriented discs are calculated and found to be 3.8% and 24.7%, respectively, which are nearly the same as the experimental results of 3.8% and 25.2%, respectively. The maximum RE and thickness shear (TS) modes electromechanical coupling factors are obtained to be 47.6% and 68.5% for the Yx/25° and Yx/167° crystal cuts, respectively. The LN crystal possesses good temperature stability of the electromechanical coupling factors (RE and TE modes) from 20?°C to 500?°C, where the variations of kp and kt for the Y-oriented discs are?<?8.0% and <1.8%, respectively.

References:

[1] Zhang SJ, Yu FP. Piezoelectric Materials for high temperature sensors. J Am Ceram Soc 2011;94:3153e70.
[2] Jiang XN, Kim K, Zhang SJ, Johnson J, Salazar G. High-temperature piezoelectric sensing. Sensors 2013;14:144e69.
[3] Yu FP, Zhang SJ, Zhao X, Guo SY, Duan XL, Yuan DR, et al. Investigation of the dielectric and piezoelectric properties of ReCa4O(BO3)3 crystals. J Phys D: Appl Phys 2011;44:135405.
[4] Yu FP, Yuan DR, Zhang SJ, Zhao X, Guo SY, Duan XL. Crystal growth and characterization of Sr3TaGa3Si2O14 single crystals. J Phys D: Appl Phys 2009;42, 085112.
[5] Zhang SJ, Li F, Jiang XN, Kim J, Luo J, Geng XC. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers e a review. Prog Mater Sci 2015;68:1e66.
[6] Warner AW, Onoe M, Coquin GA. Determination of elastic and piezoelectric constants for crystals in Class (3m). J Acoust Soc Am 1967;42:1223e31.
[7] Wang Y, Jiang YJ. Dielectric and piezoelectric anisotropy of lithium niobate and lithium tantalate single crystals. IEEE Int Symp Appl Ferroelectrics 2009: 1e4.
[8] Weis RS, Gaylord TK. Lithium niobate: summary of physical properties and crystal structure. Appl Phys Solid Surf 1985;37:191e203.
[9] Tarumi R, Matsuhisa T, Shibutani Y. Low temperature elastic constants and piezoelectric coefficients of LiNbO3 and LiTaO3: resonant ultrasound spectroscopy measurement and lattice dynamics analysis. Jpn J Appl Phys 2012;51. 07GA02-07GA02-6.
[10] Cho Y, Yamanouchi K. Nonlinear, elastic, piezoelectric, electrostrictive, and dielectric constants of lithium niobate. J Appl Phys 1987;61:875e87.
[11] Wang Y, Jiang YJ. Crystal orientation dependence of piezoelectric properties in LiNbO3 and LiTaO3. Opt Mater 2003;23:403e8.
[12] Smith RT, Welsh FS. Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J Appl Phys 1971;42:2219e30.
[13] Brown CS, Kell RC, Taylor R, Thomas LA. Piezoekctric materials, a review of progress. IRE Trans Compon Parts 1962;9:193e211.
[14] Kirk KJ, Mcnab A, Cochran A, Hall I, Hayward G. Ultrasonic arrays for monitoring cracks in an industrial plant at high temperatures. Ultrason Eng IEEE Trans 1999;46(2):311e9.
[15] Zhang FX. Modern piezoelectric. The Science Publishing Company; 2001. p. 85.
[16] Yamada T, Niizeki N, Toyoda H. Piezoelectric and elastic properties of lithium niobate single crystals. Jpn J Appl Phys 1976;6(2):151e5.
[17] Castilla HD, B elanger P, Zednik RJ. High temperature characterization of piezoelectric lithium niobate using electrochemical impedance spectroscopy resonance method. J Appl Phys 2017;122:244103.
[18] Zhang PL, Zhang ZY. Piezoelectric measurement. National defense of Industry Press; 1983.
[19] Li Y, Qin Z. Measurement of piezoelectric and ferroelectric materials. Science Press; 1984.
[20] Zhang PL, Zhong WL. Piezoelectric materials and device physics. Jinan: Shandong Technology Press; 1997.
[21] Li YL, Schmidt WG, Sanna S. Defect complexes in congruent LiNbO3 and their optical signatures. Phys Rev B 2015;91:174106.
[22] Fritze H. High-temperature piezoelectric crystals and devices. J Electroceram 2011;26:122e61.

Memo

Memo:


Last Update: 2019-03-30