|Table of Contents|
[1].Multiple-valley effect on modulation of thermoelectric properties of n-type ZrCuSiAs-structure oxyantimonides LnTSbO (Ln? lanthanides and T?Zn, Mn)[J].Journal of Materiomics,2019,(01):51-55.[doi:https://doi.org/10.1016/j.jmat.2018.11.006]
¡¡Yi Li,Jian Liu,Yu-Fei Chen,et al.Multiple-valley effect on modulation of thermoelectric properties of n-type ZrCuSiAs-structure oxyantimonides LnTSbO (Ln? lanthanides and T?Zn, Mn)[J].Journal of Materiomics,2019,(01):51-55.[doi:https://doi.org/10.1016/j.jmat.2018.11.006]
Copy

Multiple-valley effect on modulation of thermoelectric properties of n-type ZrCuSiAs-structure oxyantimonides LnTSbO (Ln? lanthanides and T?Zn, Mn)(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2019Äê01ÆÚ
Page:
51-55
Research Field:
Publishing date:
2019-03-30

Info

Title:
Multiple-valley effect on modulation of thermoelectric properties of n-type ZrCuSiAs-structure oxyantimonides LnTSbO (Ln? lanthanides and T?Zn, Mn)
Highlights:
Yi LiJian LiuYu-Fei ChenFu-Ning WangXin-Miao ZhangXue-Jin WangJi-Chao LiChun-Lei Wang
School of Physics, Shandong University, Jinan 250100, China
Keywords:
Multiple-valley structureOxyantimonideThermoelectricFirst principles
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.11.006
Abstract:
Thermoelectric properties of n-type LnTSbO (Ln?=?lanthanides and T?=?Zn, Mn) were firstly investigated by the first-principles method and the semi-classical Boltzmann theory. The results show that a multiple-valley structure appears around the bottom of conduction band. The valley with a high band degeneracy consists of the bands with a weak band dispersion, leading to large magnitudes of the Seebeck coefficient but low electrical conductivity. The valley with a low band degeneracy is made up of the bands with an intense band dispersion, resulting in a high electrical conductivity but small magnitudes of the Seebeck coefficient. The thermoelectric properties are dominated by the energy difference, ¦¤E, between the valleys. The ¦¤E value of LnZnSbO linearly increases with the ionic radius of Ln. The thermoelectric properties are thus effectively modulated by varying the lanthanides. As a result, LnZnSbO (Ln?=?Ce-Nd) with the moderate values of ¦¤E shows a better thermoelectric performance. The multiple-valley effect is an effective way to modulate the thermoelectric properties of n-type LnTSbO.

References:

[1] Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008;321:1457e61.
[2] Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG. Cubic AgPbmSbTe2?m: bulk thermoelectric materials with high figure of merit. Science 2004;303:818e21.
[3] Basu R, Bhattacharya S, Bhatt R, Roy M, Ahmad S, Singh A, Navaneethan M, Hayakawa Y, Aswal DK, Gupta SK. Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys. J Mater Chem 2014;2: 6922e30.
[4] Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater 2008;7: 105e14.
[5] Liu Y, Zhang Y, Ortega S, Ib a~nez M, Lim KH, Grau-Carbonell A, Mart¨ª-S anchez S, Ng KM, Arbiol J, Kovalenko MV, Cadavid D, Monolithic AC. Crystallographically textured nanomaterials produced from the liquid phase sintering of BixSb2- xTe3 nanocrystal building blocks. Nano Lett 2018;18:2557e63.
[6] Manettas A, Santos R, Ferreres XR, Yamini SA. Thermoelectric performance of single phase p-type quaternary (PbTe)0.65-x(PbSe)0.35(PbS)x alloys. ACS Appl Energy Mater 2018;1:1898e903.
[7] Zhou YM, Zhao LD. Promising thermoelectric bulk materials with 2D structures. Adv Mater 2017;29:1702676.
[8] Zhang X, Zhao LD. Thermoelectric materials: energy conversion between heat and electricity. J Materiomics 2015;1:92e105.
[9] Chen ZG, Shi XL, Zhao LD, Zou J. High-performance SnSe thermoelectric materials: progress and future challenge. Prog Mater Sci 2018;97:283e346.
[10] Zhao LD, Berardan D, Pei YL, Byl C, Pinsard-Gaudart L, Dragoe N. Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl Phys Lett 2010;97, 092118.
[11] Liu Y, Zhao LD, Zhu Y, Li F, Yu M, Liu DB, Xu W, Lin YH, Nan CW. Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dualdoping approach. Adv Energy Mater 2016;6:1502423.
[12] Zhao LD, Lo SH, Zhang YS, Sun H, Tan GJ, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014;508:373e7.
[13] Chang C, Wu MH, He DS, Pei YL, Wu CF, Wu XF, Yu HL, Zhu FY, Wang KD, Chen Y, Huang L, Li JF, He JQ, Zhao LD. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 2018;360: 778e83.
[14] P?ttgen R, Johrendt D. Materials with ZrCuSiAs-type structure. Z Naturforsch 2008;63b:1135e48.
[15] Muir S, Subramanian MA. ZrCuSiAs type layered oxypnictides: a bird's eye view of LnMPnO compositions. Prog Solid State Chem 2012;40:41e56.
[16] Clarke SJ, Adamson P, Herkelrath SJC, Rutt OJ, Parker DR, Pitcher MJ, Smura CF. Structures, physical properties, and chemistry of layered oxychalcogenides and oxypnictides. Inorg Chem 2008;47:8473e86.
[17] Suzuki T, Bahramy MS, Arita R, Taguchi Y, Tokura Y. Doping control and thermoelectric properties in R1 xAxZnSbO (R? La, Ce; A? Ca, Sr). Phys Rev B 2011;83, 035204.
[18] Liu J, Wang J, Wang CL, Xia SQ. Ce1-xSrxZnSbO: new thermoelectric materials formed between intermetallics and oxides. J Alloy Comp 2016;688:849e53.
[19] Pan M, Wang K, Lv WY, Hu DL, Guo K, Yang XX, Zhao JT. Structure and thermoelectric performance of layered compounds Nd1-xSrxOZnSb. J Alloy Comp 2016;688:153e7.
[20] Pan M, Guo K, Lv WY, Zhang JY, Hu DL, Yang XX, Luo J, Zhao JT. Influence of Ag doping on the thermoelectric properties of layered compound NdOZnSb. Mater Lett 2017;189:126e30.
[21] Kresse G, Furthm¨¹ller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169.
[22] Bl€ochl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953.
[23] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59:1758.
[24] Kayanuma K, Hiramatsu H, Kamiya T, Hirano M, Hosono H. Epitaxial film growth and optoelectrical properties of layered semiconductors, LaMnXO (X ? P, As, and Sb). J Appl Phys 2009;105, 073903.
[25] Schellenberg I, Nilges T, P?ttgen R. Structural and 121Sb m?ssbauer spectroscopic investigations of the antimonide oxides REMnSbO (RE ? La, Ce, Pr, Nd, Sm, Gd, Tb) and REZnSbO (RE ? La, Ce, Pr). Z Naturforsch 2008;63b:834e40.
[26] Nientiedt AT, Jeitschko W, Pollmeier PG, Brylak M. Quaternary equiatomic manganese pnictide oxides AMnPO (A ? La-Nd, Sm, Gd-Dy), AMnAsO (A ? Y, La-Nd, Sm, Gd-Dy, U), and AMnSbO (A ? La-Nd, Sm, Gd) with ZrCuSiAs type structure. Z Naturforsch 1997;52b:560e4.
[27] Wollesen P, Kaiser JW, Jeitschko W. Quaternary equiatomic compounds LnZnSbO (Ln ? La-Nd, Sm) with ZrCuSiAs-type structure. Z Naturforsch 1997;52b:1467e70.
[28] Takano Y, Komatsuzaki S, Komasaki H, Watanabe T, Takahashi Y, Takase K. Electrical and magnetic properties of LnOZnPn (Ln?rare earths; Pn?P, As, Sb). J Alloy Comp 2008;451:467e9.
[29] Yang G, Yang JM, Yan YL, Wang YX. The relationship between the electronic structure and thermoelectric properties of Zintl compounds M2Zn5As4 (M ? K, Rb). Phys Chem Chem Phys 2014;16:5661e6.
[30] Pei YZ, Shi XY, LaLonde A, Wang H, Chen LD, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011;473:66e9.
[31] Liu XH, Zhu TJ, Wang H, Hu LP, Xie HH, Jiang GY, Snyder GJ, Zhao XB. Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence. Adv Energy Mater 2013;3:1238e44.
[32] Madsen GKH, Singh DJ. BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 2006;175:67e71.
[33] Dong X, Yu HL, Li W, Pei YZ, Chen Y. First-principles study on band structures and electrical transports of doped-SnTe. J Materiomics 2016;2:158e64.
[34] Zhou YC, Li W, Wu MH, Zhao LD, He JQ, Wei SH, Huang L. Influence of defects on the thermoelectricity in SnSe: a comprehensive theoretical study. Phys Rev B 2018;97:245202.
[35] Amin B, Eckern U, Schwingenschl€ogl U. Thermoelectric properties of the misfit cobaltate Ca3Co4O9. Appl Phys Lett 2017;110:233505.
[36] Yang JY, Cheng L, Hu M. Unravelling the progressive role of rattlers in thermoelectric clathrate and strategies for performance improvement: concurrently enhancing electronic transport and blocking phononic transport. Appl Phys Lett 2017;111:242101.
[37] Tak JY, Nam WH, Lee C, Kim S, Lim YS, Ko K, Lee S, Seo WS, Cho HK, Shim JH, Park CH. Ultralow lattice thermal conductivity and significantly enhanced near-room-temperature thermoelectric figure of merit in a-Cu2Se through suppressed Cu vacancy formation by overstoichiometric Cu addition. Chem Mater 2018;30:3276e84.
[38] Wilson AH. The theory of metals. second ed. New York: Cambridge University Press; p. 264.
[39] Cutler M, Mott NF. Observation of anderson localization in an electron gas. Phys Rev 1969;181:1336e40.
[40] Li J, Zhang XY, Chen ZW, Lin SQ, Li W, Shen JH, Witting LT, Faghaninia A, Chen Y, Jain A, Chen LD, Snyder GJ, Pei YZ. Low-symmetry rhombohedral GeTe thermoelectrics. Joule 2018;2:976e87.
[41] Li W, Zheng LL, Ge BH, Lin SQ, Zhang XY, Chen ZW, Chang YJ, Pei YZ. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects. Adv Mater 2017;29:1605887.
[42] Wang SY, Sun YX, Yang J, Duan B, Wu LH, Zhang WQ, Yang JH. High thermoelectric performance in Te-free (Bi,Sb)2Se3 via structural transition induced band convergence and chemical bond softening. Energy Environ Sci 2016;9:3436e47.

Memo

Memo:


Last Update: 2019-03-30