|Table of Contents|
[1].Integration of silicon nanowires in solar cell structure for efficiency enhancement: A review[J].Journal of Materiomics,2019,(01):34-48.[doi:https://doi.org/10.1016/j.jmat.2018.11.004]
¡¡Ran Hea,Wieland Heyna,b,et al.Integration of silicon nanowires in solar cell structure for efficiency enhancement: A review[J].Journal of Materiomics,2019,(01):34-48.[doi:https://doi.org/10.1016/j.jmat.2018.11.004]
Copy

Integration of silicon nanowires in solar cell structure for efficiency enhancement: A review(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2019Äê01ÆÚ
Page:
34-48
Research Field:
Publishing date:
2019-03-30

Info

Title:
Integration of silicon nanowires in solar cell structure for efficiency enhancement: A review
Highlights:
Ran HeaWieland HeynabFelix ThielaNicol¨¢s P¨¦rezaChristine DammaDarius PohlacBernd RellinghausacChristian ReimanndMaximilian BeierdJochen FriedrichdHangtian ZhueZhifeng ReneKornelius NielschabGabi Schierninga
aLeibniz-Institut f¨¹r Festk?rper- und Werkstoffforschung Dresden, 01069, Dresden, GermanybInstitute of Materials Science, Technische Universit?t Dresden, 01069, Dresden, GermanycDresden Center for Nanoanalysis, Technische Universit?t Dresden, 01062, Dresden, GermanydFraunhofer Institut f¨¹r Integrierte Systeme und Bauelementetechnologie, 91058, Erlangen, GermanyeDepartment of Physics and TcSUH, University of Houston, Houston, TX, 77204, USA
Keywords:
SiliconThermoelectricNanostructurePower factorSawing waste
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.11.004
Abstract:
Large-scale-applicable thermoelectric materials should be both self-sustaining, in order to survive long-term duty cycles, and nonpolluting. Among all classes of known thermoelectric materials, these criteria reduce the available candidate pool, leaving silicon as one of the remaining options. Here we first review the thermoelectric properties of various silicon-related materials with respect to their morphologies and microstructures. We then report the thermoelectric properties of silicon sawing wastes recycled from silicon wafer manufacturing. We obtain a high power factor of ?32?¦ÌW?cm?1?K?2 at 1273?K with 6% phosphorus substitution in the Si crystal, a value comparable to that of phosphorus-doped silicon-germanium alloys. Our work suggests the large-scale thermoelectric applicability of recycled silicon that would otherwise contribute to the millions of tons of industrial waste produced by the semiconductor industry.

References:

[1] Shockley W, Queisser HJ. Detailed balance limit of efficiency of p-n junctionsolar cells. J Appl Phys 1961;32:510e9. https://doi.org/10.1063/1.1736034.
[2] Ali NM, Rafat NH. Modeling and simulation of nanorods photovoltaic solarcells: a review. Renew Sustain Energy Rev 2017;68:212e20. https://doi.org/10.1016/j.rser.2016.09.114.M.K. Sahoo, P. Kale / Journal of Materiomics 5 (2019) 34e48
[3] Otnes G, Borgstr€om MT. Towards high efficiency nanowire solar cells. NanoToday 2017;12:31e45. https://doi.org/10.1016/j.nantod.2016.10.007.
[4] Krogstrup P, J?rgensen HI, Heiss M, Demichel O, Holm JV, Aagesen M, et al.Single-nanowire solar cells beyond the ShockleyeQueisser limit. Nat Photon2013;7:306e10. https://doi.org/10.1038/nphoton.2013.32.
[5] Haverkort JEM, Garnett EC, Bakkers EPAM. Fundamentals of the nanowiresolar cell: optimization of the open circuit voltage. Appl Phys Rev 2018;5,031106. https://doi.org/10.1063/1.5028049.
[6] Khan MA, Sichanugrist P, Kato S, Ishikawa Y. Theoretical investigation about the optical characterization of cone-shaped pin-Si nanowire for top cell application. Energy Sci Eng 2016;4:383e93. https://doi.org/10.1002/ ese3.139.
[7] Vu XT, GhoshMoulick R, Eschermann JF, Stockmann R, Offenh€A,ausser Ingebrandt S. Fabrication and application of silicon nanowire transistor ar?rays for biomolecular detection. Sensor Actuator B Chem 2010;144:354e60. https://doi.org/10.1016/j.snb.2008.11.048.
[8] Chen KI, Li BR, Chen YT. Silicon nanowire ?eld-effect transistor-based bio?sensors for biomedical diagnosis and cellular recording investigation. Nano Today 2011;6:131e54. https://doi.org/10.1016/j.nantod.2011.02.001.
[9] Zhang GJ, Ning Y. Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal Chim Acta 2012;749:1e15. https://doi.org/ 10.1016/j.aca.2012.08.035.
[10] Choi JH, Kim H, Kim HS, Um SH, Choi JW, Oh BK. MMP-2 detective silicon nanowire biosensor using enzymatic cleavage reaction. J Biomed Nano?technol 2013;9:732e5. https://doi.org/10.1166/jbn.2013.1541.
[11] Biswas P, Karn AK, Balasubramanian P, Kale PG. Biosensor for detection of dissolved chromium in potable water: a review. Biosens Bioelectron 2017;94:589e604. https://doi.org/10.1016/j.bios.2017.03.043.
[12] Gao A, Lu N, Dai P, Li T, Pei H, Gao X, et al. Silicon-nanowire-based CMOS-compatible ?eld-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett 2011;11:3974e8. https://doi.org/ 10.1021/nl202303y.
[13] Tomioka K, Yoshimura M, Fukui T. A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 2012;488:189e92. https:// doi.org/10.1038/nature11293.
[14] Ge M, Rong J, Fang X, Zhou C. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett 2012;12:2318e23. https:// doi.org/10.1021/nl300206e.
[15] Yang Y, Ren J-G, Wang X, Chui Y-S, Wu Q-H, Chen X, et al. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries. Nanoscale 2013;5:8689. https://doi.org/10.1039/ c3nr02788k.
[16] McSweeney W, Geaney H, O¡¯Dwyer C. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery an?odes. Nano Res 2015;8:1395e442. https://doi.org/10.1007/s12274-014?0659-9.
[17] Baek SH, Park JS, Jeong YM, Kim JH. Facile synthesis of Ag-coated silicon nanowires as anode materials for high-performance rechargeable lithium battery. J Alloy Comp 2016;660:387e91. https://doi.org/10.1016/ j.jallcom.2015.11.131.
[18] Yu H, Sun Y, Singh N, Lo GQ, Kwong DL. Perspective of ?ash memory realized on vertical Si nanowires. Microelectron Reliab 2012;52:651e61. https:// doi.org/10.1016/j.microrel.2011.10.025.
[19] Kayes BM, Atwater HA, Lewis NS. Comparison of the device physics princi?ples of planar and radial p-n junction nanorod solar cells. J Appl Phys 2005;97. https://doi.org/10.1063/1.1901835.
[20] Perraud S, Poncet S, No€ere E, et al. Full el S, Levis M, Faucherand P, Rouvi?process for integrating silicon nanowire arrays into solar cells. Sol Energy Mater Sol Cells 2009;93:1568e71. https://doi.org/10.1016/ j.solmat.2009.04.009.
[21] Kale PG, Sharma P, Solanki CS. Synthesis and characterization of Si nano?particles obtained on sonication of porous silicon multilayer ?lms. J Nano Res 2012;17:13e25. https://doi.org/10.4028/www.scienti?c.net/JNanoR.17.13.
[22] Kim J, Lim J, Kim M, Lee H, Jun Y, Kim D. Fabrication of carbon-coated silicon nanowires and their application in dye-sensitized solar cells. ACS Appl Mater Interfaces 2014;6:18788e94. https://doi.org/10.1021/am504469y.
[23] Chehata N, Ltaief A, Beyou E, Ilahi B, Salem B, Baron T, et al. Functionalized silicon nanowires/conjugated polymer hybrid solar cells: optical, electrical and morphological characterizations. J Lumin 2015;168:315e24. https:// doi.org/10.1016/j.jlumin.2015.08.020.
[24] Singh N, Sahoo MK, Kale PG. Effect of MACE parameters on length of porous silicon nanowires (PSiNWs). J Cryst Growth 2018;496e497:10e4. https:// doi.org/10.1016/j.jcrysgro.2018.05.019.
[25] Amri C, Ouertani R, Hamdi A, Ezzaouia H. Effect of Silver-Assisted Chemical Vapor Etching on morphological properties and silicon solar cell perfor?mance. Mater Sci Semicond Process 2017;63:176e83. https://doi.org/ 10.1016/j.mssp.2017.02.019.
[26] Kurokawa Y, Yano M, Miyajima S, Yamada A. Bandgap tuning of silicon nanowire arrays for application to all-silicon tandem solar cells. Jpn J Appl Phys 2017;56. https://doi.org/10.7567/JJAP.56.04CS03.
[27] Zhang X, Zeng X, Zhang S, Liu F. Improving the performance of radial n-i-p junction Si nanowire solar cells by catalyst residue removal. Mater Sci Semicond Process 2016;41:457e61. https://doi.org/10.1016/ j.mssp.2015.10.011.
[28] Al-Taay HF, Mahdi MA, Parlevliet D, Jennings P. Fabrication and character?ization of solar cells based on silicon nanowire homojunctions. Silicon 2017;9:17e23. https://doi.org/10.1007/s12633-015-9329-0.
[29] Na?e N, Lachiheb MA, Bouaicha M. Effect of etching time on morphological, optical, and electronic properties of silicon nanowires. Nanoscale Res Lett 2012;7:6. https://doi.org/10.1186/1556-276x-7-393.
[30] Mann SA, Oener SZ, Cavalli A, Haverkort JEM, Bakkers EPAM, Garnett EC. Quantifying losses and thermodynamic limits in nanophotonic solar cells. Nat Nanotechnol 2016;11:1071e5. https://doi.org/10.1038/nnano.2016.162.
[31] Wallentin J, Anttu N, Asoli D, Huffman M, Aberg I, Magnusson MH, et al. InP nanowire array solar cells achieving 13.8% ef?ciency by exceeding the ray optics limit. Science 2013;339:1057e60. https://doi.org/10.1126/sci?ence.1230969 (80-).
[32] van Dam D, van Hoof NJJ, Cui Y, van Veldhoven PJ, Bakkers EPAM, G¨®omez Rivas J, et al. High-ef?ciency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indiumetineoxide mie scatterers. ACS Nano 2016;10:11414e9. https://doi.org/10.1021/acsnano.6b06874.
[33] Aberg I, Vescovi G, Asoli D, Naseem U, Gilboy JP, Sundvall C, et al. A GaAs nanowire array solar cell with 15.3% ef?ciency at 1 sun. IEEE J Photovoltaics 2016;6:185e90. https://doi.org/10.1109/JPHOTOV.2015.2484967.
[34] Tang J, Huo Z, Brittman S, Gao H, Yang P. Solution-processed coreeshell nanowires for ef?cient photovoltaic cells. Nat Nanotechnol 2011;6: 568e72. https://doi.org/10.1038/nnano.2011.139.
[35] Fan Z, Razavi H, Do J, Moriwaki A, Ergen O, Chueh Y-L, et al. Three-dimen?sional nanopillar-array photovoltaics on low-cost and ?exible substrates. Nat Mater 2009;8:648e53. https://doi.org/10.1038/nmat2493.
[36] Stelzner T, Pietsch M, Andra G, Falk F, Ose E, Christiansen S. Silicon nanowire?based solar cells. Nanotechnology 2008;19:295203. https://doi.org/10.1088/ 0957-4484/19/29/295203.
[37] Tsakalakos L, Balch J, Fronheiser J, Korevaar BA, Sulima O, Rand J. Silicon nanowire solar cells. Appl Phys Lett 2007;91. https://doi.org/10.1063/ 1.2821113.
[38] Zhao X, Wei CM, Yang L, Chou MY. Quantum con?nement and electronic properties of silicon nanowires. Phys Rev Lett 2004;92:2368051e4. https:// doi.org/10.1103/PhysRevLett.92.236805.
[39] Nolan M, O¡¯Callaghan S, Fagas G, Greer JC, Frauenheim T. Silicon nanowire band gap modi?cation. Nano Lett 2007;7:34e8. https://doi.org/10.1021/ nl061888d.
[40] Yan J-A, Yang L, Chou MY. Size and orientation dependence in the electronic properties of silicon nanowires. Phys Rev B 2007;76:115319. https://doi.org/ 10.1103/PhysRevB.76.115319.
[41] Yuan G, Zhao H, Liu X, Hasanali ZS, Zou Y, Levine A, et al. Synthesis and photoelectrochemical study of vertically aligned silicon nanowire arrays. Angew Chem Int Ed 2009;48:9680e4. https://doi.org/10.1002/ anie.200902861.
[42] Peng KQ, Wang X, Wu XL, Lee ST. Platinum nanoparticle decorated silicon nanowires for ef?cient solar energy conversion. Nano Lett 2009;9:3704e9. https://doi.org/10.1021/nl901734e.
[43] Abdel-Latif, Yassin Ghada, Hameed, Mohamed Farhat O, Hussein Mohamed, Razzak, Maher Abdel, Obayya SS. Electrical characteristics of funnel-shaped silicon nanowire solar cells. J Photon Energy 2017;7. 04750.
[44] Korany Fatma MH, Hameed Mohamed Farhat O, Hussein Mohamed, Mubarak Roaa, Eladawy Mohamed I, Obayya SSA. Conical structures for highly ef?cient solar cell applications. J Nanophotonics 2018;12. 016019.
[45] Hussein M, Hameed MFO, Obayya SSA, Swillam MA. Effective modelling of silicon nanowire solar cells. In: 2017 int. Appl. Comput. Electromagn. Soc. Symp. -Italy. IEEE; 2017. p. 1e2. https://doi.org/10.23919/ ROPACES.2017.7916023.
[46] Jung J-Y, Guo Z, Jee S-W, Um H-D, Park K-T, Lee J-H. A strong antire?ective solar cell prepared by tapering silicon nanowires. Optic Express 2010;18: A286. https://doi.org/10.1364/OE.18.00A286.
[47] Hung Y, Lee S, Wu K, Tai Y, Pan Y. Antire?ective silicon surface with vertical-aligned silicon nanowires realized by simple wet chemical etching processes. 2011. p. 15792e802. 19.
[48] Gai F, Zhang C, Zhan Y, Li X. Enhanced light-harvesting capability for silicon single-nanowire solar cells coupled with metallic cavity. Optic Express 2016;24:A1505. https://doi.org/10.1364/OE.24.0A1505.
[49] Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, et al. Enhanced absorption and Carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 2010;9:239e44. https://doi.org/10.1038/nmat2635.
[50] Farangi M, Zahedifar M, Mozdianfard MR, Pakzamir MH. Effects of silicon nanowires length on solar cells photovoltaic properties. Appl Phys A 2012;109:299e306. https://doi.org/10.1007/s00339-012-7054-8.
[51] Canham LT. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 1990;57:1046e8. https:// doi.org/10.1063/1.103561.
[52] Shockley W, Queisser HJ. Detailed balance limit of ef?ciency of p-n junction solar cells. Appl Phys 1961;32:510e9. https://doi.org/10.1063/1.1736034.
[53] Guichard AR, Barsic DN, Sharma S, Kamins TI, Brongersma ML. Tunable light emission from quantum-con?ned excitons in TiSi2-catalyzed silicon nano?wires. Nano Lett 2006;6:2140e4. https://doi.org/10.1021/nl061287m.
[54] Tsakalakos L. Strong broadband optical absorption in silicon nanowire ?lms. J Nanophotonics 2007;1, 013552. https://doi.org/10.1117/1.2768999.
[55] Bruno M, Palummo M, Marini A, Del Sole R, Ossicini S. From Si nanowires to porous silicon: the role of excitonic effects. Phys Rev Lett 2007;98. https:// doi.org/10.1103/PhysRevLett.98.036807.
[56] Leu PW, Shan B, Cho K. Surface chemical control of the electronic structure of silicon nanowires: density functional calculations. Phys Rev B 2006;73: 195320. https://doi.org/10.1103/PhysRevB.73.195320.
[57] Zhao X, Wei CM, Yang L, Chou MY. Quantum con?nement and electronic properties of silicon nanowires. Phys Rev Lett 2004;92. https://doi.org/ 10.1103/PhysRevLett.92.236805.
[58] Yao D, Zhang G, Li B. A universal expression of band gap for silicon nanowires of different cross-section geometries. Nano Lett 2008;8:4557e61. https:// doi.org/10.1021/nl802807t.
[59] Ramanujam J, Shiri D, Verma A. Silicon nanowire growth and properties: a review. Mater Express 2011;1:105e26. https://doi.org/10.1166/ mex.2011.1013.
[60] Garnett E, Yang P. Light trapping in silicon nanowire solar cells. Nano Lett 2010;10:1082e7. https://doi.org/10.1021/nl100161z.
[61] Hua X, Zeng Y, Wang W, Shen W. Light absorption mechanism of c-Si/a -Si half-coaxial nanowire arrays for nanostructured heterojunction. Photovol?taics 2014;61:4007e13.
[62] Wolfe JP. Thermodynamics of excitons in semiconductors. Phys Today 1982;35:46e54.
[63] Pham VT, Dutta M, Bui HT, Fukata N. Effect of nanowire length on the per-formance of silicon nanowires based solar cell. Adv Nat Sci Nanosci Nano?technol 2014;5. https://doi.org/10.1088/2043-6262/5/4/045014.
[64] Kulakci M, Es F, Ozdemir B, Unalan HE, Turan R. Application of si nanowires fabricated by metal-assisted etching to crystalline si solar cells. IEEE J Pho?tovoltaics 2013;3:548e53. https://doi.org/10.1109/JPHOTOV.2012.2228300.
[65] Yu L, Fortuna F, O¡¯Donnell B, Jeon T, Foldyna M, Picardi G, et al. Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells. Nano Lett 2012;12:4153e8. https://doi.org/ 10.1021/nl3017187.
[66] Misra S, Yu L, Foldyna M, Roca I Cabarrocas P. High ef?ciency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires. Sol Energy Mater Sol Cells 2013;118:90e5. https://doi.org/10.1016/j.solmat.2013.07.036.
[67] Hsueh TJ, Chen HY, Tsai TY, Weng WY, Yeh YM, Dai BT, et al. Si nanowire?based photovoltaic devices prepared at various temperatures. IEEE Elec?tron Device Lett 2010;31:1275e7. https://doi.org/10.1109/ LED.2010.2068274.
[68] Sharma M, Pudasaini PR, Ruiz-Zepeda F, Elam D, Ayon AA. Ultrathin, ?exible organiceinorganic hybrid solar cells based on silicon nanowires and PEDOT: PSS. ACS Appl Mater Interfaces 2014;6:4356e63. https://doi.org/10.1021/ am500063w.
[69] Syu HJ, Shiu SC, Lin CF. Effect of nanowire length to silicon nanowire/PEDOT: PSS solar cells. Conf Rec IEEE Photovolt Spec Conf 2011. https://doi.org/ 10.1109/PVSC.2011.6186451. 002490e1.
[70] Ge Z, Xu L, Cao Y, Wu T, Song H, Ma Z, et al. Substantial improvement of short wavelength response in n-SiNW/PEDOT:PSS solar cell. Nanoscale Res Lett 2015;10:1e8. https://doi.org/10.1186/s11671-015-0998-9.
[71] He L, Jiang C, Wang H, Lai D. Simple approach of fabricating high ef?ciency Si nanowire/conductive polymer hybrid solar cells. 2011. p. 1406e8. 32.
[72] Aouida S, Benabderrahmane Zaghouani R, Bachtouli N, Bessais B. Hydrogen passivation of silicon nanowire structures. Appl Surf Sci 2016;370:49e52. https://doi.org/10.1016/j.apsusc.2016.02.116.
[73] Najar A, Slimane AB, Hedhili MN, Anjum D, Sougrat R, Ng TK, et al. Effect of hydro?uoric acid concentration on the evolution of photoluminescence characteristics in porous silicon nanowires prepared by Ag-assisted elec?troless etching method. J Appl Phys 2012;112. https://doi.org/10.1063/ 1.4740051.
[74] Ben Rabha M, Khezami L, Jemai AB, Alhathlool R, Ajbar A. Surface passivation of silicon nanowires based metal nano-particle assisted chemical etching for photovoltaic applications. J Cryst Growth 2017;462:35e40. https://doi.org/ 10.1016/j.jcrysgro.2017.01.021.
[75] Misra S, Yu L, Chen W, Roca I Cabarrocas P. Wetting layer: the key player in plasma-assisted silicon nanowire growth mediated by tin. J Phys Chem C 2013;117:17786e90. https://doi.org/10.1021/jp403063d.
[76] Jevasuwan W, Pradel KC, Subramani T, Chen J, Takei T, Nakajima K, et al. Diffused back surface ?eld formation in combination with two-step H2 annealing for improvement of silicon nanowire-based solar cell ef?ciency. Jpn J Appl Phys 2017;56. https://doi.org/10.7567/JJAP.56.04CP01.
[77] Hamidinezhad H, Ashkarran AA. Forest of ultra thin silicon nanowires: realization of temperature and catalyst size. J Mater Sci Mater Electron 2018;29:5373e9. https://doi.org/10.1007/s10854-017-8503-0.
[78] Yang P, Zeng X, Xie X, Zhang X, Li H, Wang Z. Improved open-circuit voltage of silicon nanowires solar cells by surface passivation. RSC Adv 2013;3: 24971. https://doi.org/10.1039/c3ra42823k.
[79] Khan F, Baek SH, Kim JH. Novel approach for fabrication of buried contact silicon nanowire solar cells with improved performance. Sol Energy 2016;137:122e8. https://doi.org/10.1016/j.solener.2016.08.010.
[80] Zahedifar M, Farangi M, Pakzamir MH. Study the effect of silicon nanowire length on characteristics of silicon nanowire based solar cells by using impedance spectroscopy. Int J Nanosci Nanotechnol 2013;9:101e8.
[81] Zhang F, Song T, Sun B. Conjugated polymersilicon nanowire array hybrid Schottky diode for solar cell application. Nanotechnology 2012;23. https:// doi.org/10.1088/0957-4484/23/19/194006.
[82] Gentile P, Dupr¨®e L, Solanki a, Buttard D, Pauc N. Radial photovoltaic junction with single Si nanowire coreeshell structure. Micro & Nano Lett 2015;10: 37e9. https://doi.org/10.1049/mnl.2014.0138.
[83] Wang X, Shen H, Eich?eld SM, Mayer TS, Redwing JM. Radial junction silicon nanowire photovoltaics with heterojunction with intrinsic thin layer (HIT) structure. IEEE J Photovoltaics 2016;6:1446e50. https://doi.org/10.1109/ JPHOTOV.2016.2601949.
[84] Yu L, O¡¯Donnell B, Foldyna M, Roca I Cabarrocas P. Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires. Nanotechnology
2012;23. https://doi.org/10.1088/0957-4484/23/19/194011.
[85] Hoffmann S, Bauer J, Ronning C, Stelzner T, Michler J, Ballif C, et al. Axial p-n junctions realized in silicon nanowires by ion implantation. Nano Lett 2009;9:1341e4. https://doi.org/10.1021/nl802977m.
[86] Mcgranaghan M, Ortmeyer T, Crudele D, Key T, Smith J, Barker P. Renewable systems interconnection study: advanced grid planning and operations. Energy 2008:123.
[87] Fang H, Li X, Song S, Xu Y, Zhu J. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology 2008;19. https:// doi.org/10.1088/0957-4484/19/25/255703.
[88] Zhang P, Liu P, Siontas S, Zaslavsky A, Paci?ci D, Ha JY, et al. Dense nano?imprinted silicon nanowire arrays with passivated axial p-i-n junctions for photovoltaic applications. J Appl Phys 2015;117. https://doi.org/10.1063/ 1.4916535.
[89] Shirayanagi Y, Yashiki Y, Kato S, Konagai M. Preparation of axial-type wire-structure crystalline silicon solar cells. Jpn J Appl Phys 2017;56. 08MA09.
[90] Kempa TJ, Tian B, Kim DR, Jinsong H, Xiaolin Z, Lieber CM. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett 2008;8:3456e60. https://doi.org/10.1021/nl8023438.
[91] Lu Y, Lal A. High-ef?ciency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. Nano Lett 2010;10: 4651e6. https://doi.org/10.1021/nl102867a.
[92] Eisenhawer B, Sill I, Falk F. Radial heteroemitter solar cells based on VLS grown silicon nanowires. Phys Status Solidi Appl Mater Sci 2013;210: 695e700. https://doi.org/10.1002/pssa.201200374.
[93] Peng K, Xu Y, Wu Y, Yan Y, Lee ST, Zhu J. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 2005;1:1062e7. https:// doi.org/10.1002/smll.200500137.
[94] Shu Q, Wei J, Wang K, Zhu H, Li Z, Jia Y, et al. Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes. Nano Lett 2009;9:4338e42. https://doi.org/ 10.1021/nl902581k.
[95] Jia G, Gawlik A, Bergmann J, Eisenhawer B, Schonherr S, Andra G, et al. Silicon nanowire solar cells with radial p-n heterojunction on crystalline silicon thin ?lms: light trapping properties. IEEE J Photovoltaics 2014;4:28e32. https:// doi.org/10.1109/JPHOTOV.2013.2289873.
[96] Dong G, Zhou Y. Passivation of high aspect ratio silicon nanowires by using catalytic chemical vapor deposition for radial heterojunction solar cell application. RSC Adv 2017;7:45101e6. https://doi.org/10.1039/C7RA08343B.
[97] Shiu SC, Chao JJ, Hung SC, Yeh CL, Lin CF. Morphology dependence of silicon nanowire/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) heter-ojunction solar cells. Chem Mater 2010;22:3108e13. https://doi.org/ 10.1021/cm100086x.
[98] Subramani T, Chen J, Sun YL, Jevasuwan W, Fukata N. High-ef?ciency silicon hybrid solar cells employing nanocrystalline Si quantum dots and Si nanotips for energy management. Nanomater Energy 2017;35:154e60. https:// doi.org/10.1016/j.nanoen.2017.03.037.
[99] Park KT, Kim HJ, Park MJ, Jeong JH, Lee J, Choi DG, et al. 13.2% ef?ciency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode. Sci Rep 2015;5:1e9. https://doi.org/10.1038/srep12093.
[100] Liang Z, Su M, Wang H, Gong Y, Xie F, Gong L, et al. Characteristics of a silicon nanowires/PEDOT:PSS heterojunction and its effect on the solar cell per-formance. ACS Appl Mater Interfaces 2015;7:5830e6. https://doi.org/ 10.1021/am508879b.
[101] Dkhil S Ben, Davenas J, Bourguiga R, Cornu D. Effect of thermal treatments on the properties of PVK/silicon nanowires ?lms for hybrid solar cells. Synth Met 2011;161:1928e33. https://doi.org/10.1016/j.synthmet.2011.06.037.
[102] Jiang Y, Gong X, Qin R, Liu H, Xia C, Ma H. Ef?ciency enhancement mecha?nism for poly(3, 4-ethylenedioxythiophene):Poly(styrenesulfonate)/Silicon nanowires hybrid solar cells using alkali treatment. Nanoscale Res Lett 2016;11. https://doi.org/10.1186/s11671-016-1450-5.
[103] Yang Z, Liu Z, Sheng J, Guo W, Zeng Y, Gao P, et al. Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells. Sci Rep 2017;7: 1e9. https://doi.org/10.1038/s41598-017-15300-0.
[104] Khatri I, Hoshino A, Watanabe F, Liu Q, Ishikawa R, Ueno K, et al. Self-assembled silver nanowires as top electrode for poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate)/n-silicon solar cell. Thin Solid Films 2014;558:306e10. https://doi.org/10.1016/j.tsf.2014.02.073.
[105] He L, Jiang C, Wang H, Lai D, Rusli. Si nanowires organic semiconductor hybrid heterojunction solar cells toward 10% ef?ciency. ACS Appl Mater Interfaces 2012;4:1704e8. https://doi.org/10.1021/am201838y.
[106] Chehata N, Ltaief A, Ilahi B, Salam B, Bouazizi A, Maaref H, et al. Improved photovoltaic performance of silicon nanowires/conjugated polymer hybrid solar cells. Synth Met 2014;191:6e11. https://doi.org/10.1016/ j.synthmet.2014.02.009.
[107] Wang H, Wang J, Hong L, Tan YH, Tan CS. Thin ?lm silicon nanowire/PEDOT: PSS hybrid solar cells with surface treatment. Nanoscale Res Lett 2016;11: 1e10. https://doi.org/10.1186/s11671-016-1527-1.
[108] Moreno M, Cabarrocas PRI. Ultra-thin crystalline silicon ?lms produced by plasma assisted epitaxial growth on silicon wafers and their transfer to foreign substrates. EPJ Photovoltaics 2010;1:10301. https://doi.org/10.1051/ epjpv/2010001.
[109] Miao F, Tao B, Chu PK. Enhancement of the ef?ciency of dye-sensitized solar cells with highly ordered Pt-decorated nanostructured silicon nanowires based counter electrodes. Electrochim Acta 2013;96:61e5. https://doi.org/ 10.1016/j.electacta.2013.02.059.
[110] Pudasaini PR, Ruiz-Zepeda F, Sharma M, Elam D, Ponce A, Ayon A a. High ef?ciency hybrid silicon nanopillarepolymer solar cells. ACS Appl Mater Interfaces 2013;5:9620e7. https://doi.org/10.1021/am402598j.
[111] Zhang J, Zhang Y, Zhang F, Sun B. Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3,4-ethyl-enedioxythiophene):poly(styrenesulfonate). Appl Phys Lett 2013;102. https://doi.org/10.1063/1.4773368. 013501.
[112] Hsu C-W, Hsieh Y-D, Wang G-J. Quantum dots/silicon nanowire coaxial photoelectrode-based dye-sensitized solar cells. Des. Test, integr. Packag. MEMS/MOEMS (DTIP), 2015 symp. 2015. p. 1e6.
[113] Yang L, Ji Y, Liao F, Cheng Y, Sun Y, Li Y, et al. Pt nanoparticle/Si nanowire composites as an excellent catalytic counter electrode for dye-sensitized solar cells. Electrochim Acta 2018;271:261e7. https://doi.org/10.1016/ j.electacta.2018.03.157.
[114] Li S, Ma W, Chen X, Xie K, Li Y, He X. Applied Surface Science Structure and antire?ection properties of SiNWs arrays form mc-Si wafer through Ag?catalyzed chemical etching. Appl Surf Sci 2016;369:232e40. https:// doi.org/10.1016/j.apsusc.2016.02.028.
[115] Jeon M, Kamisako K. Synthesis and characterization of silicon nanowires using tin catalyst for solar cells application. Mater Lett 2009;63:777e9. https://doi.org/10.1016/j.matlet.2009.01.001.
[116] Jia R, Feng Z, Tao K, Dou B, Sun Y, Jin Z. Current transportation enhancement with ZnO nanoroads for silicon nanowire solar cell. 2016. p. 2095e7.
[117] Savin H, Repo P, Von Gastrow G, Ortega P, Calle E, Gar¨ªn M, et al. Black silicon solar cells with interdigitated back-contacts achieve 22.1% ef?ciency. Nat Nanotechnol 2015;10:624e8. https://doi.org/10.1038/nnano.2015.89.
[118] Zhang Z, Wang B, Chen Y. Preparation of pyramid e SiNWs binary structure with Ag nanoparticles-assisted chemical etching. Rare Met 2015:2e5. https://doi.org/10.1007/s12598-015-0608-0.
[183] Mehta Shyam. PV technology and cost outlook, 2013-2017. 2013. June [cited] Available from: https://www.greentechmedia.com/research/report/pv-technology-and-cost-outlook-2013-2017.
[184] Fischer M. International technology roadmap for photovoltaic (ITRPV). ninth ed. 2018. March 2018.
[185] Drouiche N, Cuellar P, Kerkar F, Medjahed S, Boutouchent-Guer? N, Ould Hamou M. Recovery of solar grade silicon from kerf loss slurry waste. Renew Sustain Energy Rev 2014;32:936e43.
[186] Lin Y-C, Wang T-Y, Lan C-W, Tai CY. Recovery of silicon powder from kerf loss slurry by centrifugation. Powder Technol 2010;200(3):216e23.
[187] Li J, Huang K, Zhu H. Phase separation of a microsized powder mixture of Si and SiC by CueSi alloying. Chem Eng Sci 2015;127:25e30.
[188] Moen M, Halvorsen T, M?rk K, Velken S. Recycling of silicon metal powder from industrial powder waste streams. Met Powder Rep 2017;72(3): 182e7.
[189] Akasaka M, Iida T, Mito Y, Omori T, Oguni Y, Yokoyama S, et al. Fabrication of Mg2Si from a reused-silicon source and its thermoelectric characteristics. MRS Proceedings 2011:1044.
[190] Honda Y, Iida T, Sakamoto T, Sakuragi S, Taguchi Y, Mito Y, et al. Direct thermal-to-electric energy conversion material consisting of environmentally-benign Mg2Si synthesized using waste Si sludge and recycled Mg alloy. MRS Proceedings 2011:1218.
[191] Isoda Y, Tada S, Kitagawa H, Shinohara Y. Thermoelectric properties of Sb?doped Mg2Si prepared using different silicon sources. J Electron Mater 2015;45(3):1772e8.
[192] Mesaritis G, Symeou E, Delimitis A, Oikonomidis S, Jaegle M, Tarantik K, et al. Recycling Si-kerf from photovoltaics: a very promising route to thermo?electrics. J Alloy Comp 2018;775:1036e43.
[193] Harris GL. Properties of silicon carbide. Iet; 1995.
[194] May AF, Singh DJ, Snyder GJ. In?uence of band structure on the large ther?moelectric performance of lanthanum telluride. Phys Rev B 2009;79(15).
[195] Kim H-S, Gibbs ZM, Tang Y, Wang H, Snyder GJ. Characterization of Lorenz number with Seebeck coef?cient measurement. Apl Mater 2015;3(4), 041506.
[196] Nakamura Y, Isogawa M, Ueda T, Yamasaka S, Matsui H, Kikkawa J, et al. Anomalous reduction of thermal conductivity in coherent nanocrystal ar?chitecture for silicon thermoelectric material. Nanomater Energy 2015;12: 845e51.

Memo

Memo:


Last Update: 2019-03-30