|Table of Contents|
[1].Single femtosecond laser beam induced nanogratings in transparent media - Mechanisms and applications[J].Journal of Materiomics,2019,(01):1-14.[doi:https://doi.org/10.1016/j.jmat.2019.01.002]
¡¡Bo Zhanga,Xiaofeng Liub,Jianrong Qiua.Single femtosecond laser beam induced nanogratings in transparent media - Mechanisms and applications[J].Journal of Materiomics,2019,(01):1-14.[doi:https://doi.org/10.1016/j.jmat.2019.01.002]
Copy

Single femtosecond laser beam induced nanogratings in transparent media - Mechanisms and applications(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2019Äê01ÆÚ
Page:
1-14
Research Field:
Publishing date:
2019-03-30

Info

Title:
Single femtosecond laser beam induced nanogratings in transparent media - Mechanisms and applications
Highlights:
Bo ZhangaXiaofeng LiubJianrong Qiua
aState Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, ChinabCollege of Material Science and Engineering, Zhejiang University, Hangzhou, 310027, China
Keywords:
Femtosecond laserLaser micromachiningNanogratingTransparent mediumSelf-assembly
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2019.01.002
Abstract:
Single femtosecond laser beam induced nanograting structure in transparent media has attracted extensive attention in many fields of science and technology in the past decades. Considering the excellent physicochemical properties and promising applications, it will continue to be a hot topic in the field of laser-matter interaction in the future. Over the recent ten years, both fundamental research and practical application have gained tremendous advances. We have witnessed the finding of novel fresh phenomena, imaginative physical models and promising technologies related to femtosecond laser induced nanogratings in transparent materials. However, despite those achievements, numerous issues related to mechanism, material dependence and process are still far from completely solved. This review will focus on recent research progress including basic properties, theory models, control methods and potential applications. Achievements in recent five years are discussed in detail and several core issues are specially commented. The future developing trend is also prospected.

References:

[1] Fernandez A, Fuji T, Poppe A, F¨¹rbach A, Krausz F, Apolonski A. Chirped-pulse oscillators: a route to high-power femtosecond pulses without external ampli?cation. Opt Lett 2004;29:1366e8.
[2] Braun A, Korn G, Liu X, Du D, Squier J, Mourou G. Self-channeling of high?peak-power femtosecond laser pulses in air. Opt Lett 1995;20:73e5.
[3] Vorobyev AY, Guo C. Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals. Appl Phys A 2007;86:321e4.
[4] Tao H, Lin J, Hao Z, Gao X, Song X, Sun C, Tan X. Formation of strong light-trapping nano-and microscale structures on a spherical metal surface by femtosecond laser ?lament. Appl Phys Lett 2012;100:201111.
[5] Guo Z, Qu S, Ran L, Han Y, Liu S. Formation of two-dimensional periodic microstructures by a single shot of three interfered femtosecond laser pulses on the surface of silica glass. Opt Lett 2008;33:2383e5.
[6] Chen HX, Huang M, Zhao FL, Qiu JR, Li RX, Xu ZZ, He XK, Zhang J, Kuroda H, Jia TQ. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses. Phys Rev B 2005;72:125429.
[7] Link S, Burda C, Nikoobakht B, El-Sayed MA. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 2000;104:6152e63.
[8] Assion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M, Gerber G. Control of chemical reactions by feedback-optimized phase-sha?ped femtosecond laser pulses. Science 1998;282:919.
[9] Donaldson KE, Braga-Mele R, Cabot F, Davidson R, Dhaliwal DK, Hamilton R, Jackson M, Patterson L, Stonecipher K, Yoo SH. Femtosecond lasereassisted cataract surgery. J Cataract Refract Surg 2013;39:1753e63.
[10] Tan D, Sharafudeen KN, Yue Y, Qiu J. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog Mater Sci 2016;76:154e228.
[11] Zhang Y, Chen Q, Xia H, Sun H. Designable 3D nanofabrication by femto?second laser direct writing. Nano Today 2010;5:435e48.
[12] Liu D, Sun Y, Dong W, Yang R, Chen Q, Sun H. Dynamic laser prototyping for biomimetic nanofabrication. LASER PHOTONICS REV 2014;8:882e8.
[13] Qiu J, Miura K, Hirao K. Femtosecond laser-induced microfeatures in glasses and their applications. J Non-Cryst Solids 2008;354:1100e11.
[14] Schaffer CB, Brodeur A, Mazur E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas Sci Technol 2001;12:1784.
[15] Itoh K, Watanabe W, Nolte S, Schaffer CB. Ultrafast processes for bulk modi?cation of transparent materials. MRS Bull 2006;31:620e5.
[16] Mishchik K, D'Amico C, Velpula PK, Mauclair C, Boukenter A, Ouerdane Y, Stoian R. Ultrafast laser induced electronic and structural modi?cations in bulk fused silica. J Appl Phys 2013;114:133502.
[17] Liu Y, Zhu B, Wang L, Qiu J, Dai Y, Ma H. Femtosecond laser induced coor?dination transformation and migration of ions in sodium borate glasses. Appl Phys Lett 2008;92:121113.
[18] Lancry M, Poumellec B, Chahid-Erraji A, Beresna M, Kazansky PG. Depen?dence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses. Opt Mater Express 2011;1: 711e23.
[19] Kanehira S, Si J, Qiu J, Fujita K, Hirao K. Periodic nanovoid structures via femtosecond laser irradiation. Nano Lett 2005;5:1591e5.
[20] Cerkauskaite A, Drevinskas R, Rybaltovskii AO, Kazansky PG. Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel. OPT EXPRESS 2017;25:8011e21.
[21] Shimotsuma Y, Kazansky PG, Qiu J, Hirao K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys Rev Lett 2003;91:247405.
[22] Sudrie L, Franco M, Prade B, Mysyrowicz A. Writing of permanent birefrin?gent microlayers in bulk fused silica with femtosecond laser pulses. OPT COMMUN 1999;171:279e84.
[23] Hnatovsky C, Taylor RS, Simova E, Bhardwaj VR, Rayner DM, Corkum PB. Polarization-selective etching in femtosecond laser-assisted micro?uidic channel fabrication in fused silica. Opt Lett 2005;30:1867e9.
[24] Inouye H, Mitsuyu T, Miura K, Qiu J, Hirao K, Starrost F, Kazansky PG. Anomalous anisotropic light scattering in Ge-doped silica glass. Phys Rev Lett 1999;82:2199e202.
[25] Qiu J, Kazanski PG, Si J, Miura K, Mitsuyu T, Hirao K, Gaeta AL. Memorized polarization-dependent light scattering in rare-earth-ion-doped glass. Appl Phys Lett 2000;77:1940e2.
[26] Hnatovsky C, Taylor RS, Simova E, Rajeev PP, Rayner DM, Bhardwaj VR, Corkum PB. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching. Appl Phys A 2006;84:47e61.
[27] Bricchi E, Kazansky PG. Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass. Appl Phys Lett 2006;88: 111119.
[28] Lancry M, Poumellec B, Canning J, Cook K, Poulin J, Brisset F. Ultrafast nanoporous silica formation driven by femtosecond laser irradiation. LASER PHOTONICS REV 2013;7:953e62.
[29] Bricchi E, Klappauf BG, Kazansky PG. Form birefringence and negative index change created by femtosecond direct writing in transparent materials. Opt Lett 2004;29:119e21.
[30] Shvedov V, Krolikowski W, Rode A, Hnatovsky C. Revealing local ?eld structure of focused ultrashort pulses. Phys Rev Lett 2011;106:123901.
[31] Zhang F, Zhang H, Dong G, Qiu J. Embedded nanogratings in germanium dioxide glass induced by femtosecond laser direct writing. J Opt Soc Am B 2014;31:860e4.
[32] Simova E, Rajeev PP, Hnatovsky C, Taylor RS, Rayner DM, Corkum PB, Bhardwaj VR. Optically produced arrays of planar nanostructures inside fused silica. Phys Rev Lett 2006;96, 057404.
[33] Rajeev PP, Gertsvolf M, Hnatovsky C, Simova E, Taylor RS, Corkum PB, Rayner DM, Bhardwaj VR. Transient nanoplasmonics inside dielectrics. J Phys B Atom Mol Opt Phys 2007;40:S273.
[34] Couairon A, Franco M, Lamouroux B, Prade B, Tzortzakis S, Mysyrowicz A, Sudrie L. Femtosecond laser-induced damage and ?lamentary propagation in fused silica. Phys Rev Lett 2002;89:186601.
[35] Sudrie L, Franco M, Prade B, Mysyrowicz A, Couairon A. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses. Phys Rev B 2005;71:125435.
[36] Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photon Rev 2008;2:26e46.
[37] Taylor RS, Hnatovsky C, Simova E, Rajeev PP, Rayner DM, Corkum PB. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass. Opt Lett 2007;32:2888e90.
[38] Richter S, Heinrich M, D€oring S, T¨¹nnermann A, Nolte S, Peschel U. Nano?gratings in fused silica: formation, control, and applications. J Laser Appl 2012;24, 042008.
[39] Dostovalov A, Babin S, Dubov M, Baregheh M, Mezentsev V. Comparative numerical study of energy deposition in femtosecond laser microfabrication with fundamental and second harmonics of Yb-doped laser. Laser Phys 2012;22:930e6.
[40] Beresna M, Geceviicius M, Lancry M, Poumellec B, Kazansky PG. Broadband anisotropy of femtosecond laser induced nanogratings in fused silica. Appl Phys Lett 2013;103:131903.
[41] Mauclair C, Zam?rescu M, Colombier JP, Cheng G, Mishchik K, Audouard E, Stoian R. Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes. OPT EXPRESS 2012;20:12997e3005.
[42] Richter S, Heinrich M, Zimmermann F, Vetter C, T¨¹nnermann A, Nolte S. Nanogratings in fused silica: structure, formation and applications. In: Progress in nonlinear nano-optics. Cham: Springer International Publishing; 2015. p. 49e71.
[43] Yang W, Bricchi E, Kazansky PG, Bovatsek J, Arai AY. Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing. OPT EX?PRESS 2006;14:10117e24.
[44] Ramirez LPR, Heinrich M, Richter S, Dreisow F, Keil R, Korovin AV, Peschel U, Nolte S, T¨¹nnermann A. Tuning the structural properties of femtosecond?laser-induced nanogratings. Appl Phys A 2010;100:1e6.
[45] Richter S, Miese C, D€oring S, Zimmermann F, Withford MJ, T¨¹nnermann A, Nolte S. Laser induced nanogratings beyond fused silica -periodic nano?structures in borosilicate glasses and ULE?. Opt Mater Express 2013;3: 1161e6.
[46] Poumellec B, Lancry M, Chahid-Erraji A, Kazansky PG. Modi?cation thresh?olds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited]. Opt Mater Express 2011;1:766e82.
[47] Hnatovsky C, Taylor RS, Rajeev PP, Simova E, Bhardwaj VR, Rayner DM, Corkum PB. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica. Appl Phys Lett 2005;87, 014104.
[48] Davis KM, Miura K, Sugimoto N, Hirao K. Writing waveguides in glass with a femtosecond laser. Opt Lett 1996;21:1729e31.
[49] Mishchik K, Cheng G, Huo G, Burakov IM, Mauclair C, Mermillod-Blondin A, Rosenfeld A, Ouerdane Y, Boukenter A, Parriaux O, Stoian R. Nanosize structural modi?cations with polarization functions in ultrafast laser irra?diated bulk fused silica. OPT EXPRESS 2010;18:24809e24.
[50] Smelser CW, Mihailov SJ, Grobnic D. Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask. OPT EXPRESS 2005;13:5377e86.
[51] Lu P, Grobnic D, Mihailov SJ. Characterization of the birefringence in ?ber bragg gratings fabricated with an ultrafast-infrared laser. J Lightwave Technol 2007;25:779e86.
[52] Glezer EN, Mazur E. Ultrafast-laser driven micro-explosions in transparent materials. Appl Phys Lett 1997;71:882e4.
[53] Geceviicius M, Beresna M, Zhang J, Yang W, Takebe H, Kazansky PG. Extraordinary anisotropy of ultrafast laser writing in glass. OPT EXPRESS 2013;21:3959e68.
[54] Gertsvolf M, Simova E, Hnatovsky C, Taylor RS, Bhardwaj VR, Rayner DM, Corkum PB, Rajeev PP. Memory in nonlinear ionization of transparent solids. Phys Rev Lett 2006;97:253001.
[55] Shcheblanov NS, Itina TE. Femtosecond laser interactions with dielectric materials: insights of a detailed modeling of electronic excitation and relaxation processes. Appl Phys A 2013;110:579e83.
[56] Liu D, Li Y, Liu M, Yang H, Gong Q. The polarization-dependence of femto?second laser damage threshold inside fused silica. Appl Phys B 2008;91:597.
[57] Liao Y, Zeng B, Qiao L, Liu L, Sugioka K, Cheng Y. Threshold effect in femto?second laser induced nanograting formation in glass: in?uence of the pulse duration. Appl Phys A 2014;114:223e30.
[58] Gawelda W, Puerto D, Siegel J, Ferrer A, Ruiz De La Cruz A, Fern?andez H, Solis J. Ultrafast imaging of transient electronic plasmas produced in
conditions of femtosecond waveguide writing in dielectrics. Appl Phys Lett 2008;93:121109.
[59] Richter S, Heinrich M, D€oring S, T¨¹nnermann A, Nolte S. Formation of femtosecond laser-induced nanogratings at high repetition rates. Appl Phys A 2011;104:503e7.
[60] Liang F, Vallee R, Chin SL. Mechanism of nanograting formation on the sur?face of fused silica. OPT EXPRESS 2012;20:4389e96.
[61] Liao Y, Pan W, Cui Y, Qiao L, Bellouard Y, Sugioka K, Cheng Y. Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation. Opt Lett 2015;40:3623e6.
[62] Eaton SM, Zhang H, Herman PR, Yoshino F, Shah L, Bovatsek J, Arai AY. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. OPT EXPRESS 2005;13:4708e16.
[63] Eaton SM, Zhang H, Ng ML, Li J, Chen W, Ho S, Herman PR. Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. OPT EXPRESS 2008;16:9443e58.
[64] Richter S, Jia F, Heinrich M, Doring S, Peschel U, Tunnermann A, Nolte S. The role of self-trapped excitons and defects in the formation of nanogratings in fused silica. Opt Lett 2012;37:482e4.
[65] Kazansky PG, Yang W, Bricchi E, Bovatsek J, Arai A, Shimotsuma Y, Miura K, Hirao K. ¡°Quill¡± writing with ultrashort light pulses in transparent materials. Appl Phys Lett 2007;90:151120.
[66] Zhang F, Yu Y, Cheng C, Dai Y, Qiu J. Fabrication of polarization-dependent light attenuator in fused silica using a low-repetition-rate femtosecond laser. Opt Lett 2013;38:2212e4.
[67] Salter PS, Booth MJ. Dynamic control of directional asymmetry observed in ultrafast laser direct writing. Appl Phys Lett 2012;101:141109.
[68] Akturk S, Kimmel M, O Shea P, Trebino R. Measuring pulse-front tilt in ul?trashort pulses using GRENOUILLE. OPT EXPRESS 2003;11:491e501.
[69] Vitek DN, Block E, Bellouard Y, Adams DE, Backus S, Kleinfeld D, Durfee CG, Squier JA. Spatio-temporally focused femtosecond laser pulses for nonre?ciprocal writing in optically transparent materials. OPT EXPRESS 2010;18: 24673e8.
[70] Akturk S, Gu X, Zeek E, Trebino R. Pulse-front tilt caused by spatial and temporal chirp. OPT EXPRESS 2004;12:4399e410.
[71] Yang W, Kazansky PG, Shimotsuma Y, Sakakura M, Miura K, Hirao K. Ultra-short-pulse laser calligraphy. Appl Phys Lett 2008;93:171109.
[72] Poumellec B, Lancry M, Poulin JC, Ani-Joseph S. Non reciprocal writing and chirality in femtosecond laser irradiated silica. OPT EXPRESS 2008;16: 18354e61.
[73] Canning J, Lancry M, Cook K, Weickman A, Brisset F, Poumellec B. Anatomy of a femtosecond laser processed silica waveguide [Invited]. Opt Mater Express 2011;1:998e1008.
[74] Petite G, Daguzan P, Guizard S, Martin P. Conduction electrons in wide?bandgap oxides: a subpicosecond time-resolved optical study. Nucl Ins?trum Methods Phys Res Sect B Beam Interact Mater Atoms 1996;107: 97e101.
[75] Guizard S, Daguzan P, Petite G, D'Oliveira P, Meynadier P, Perdrix M, Martin P. Subpicosecond study of carrier trapping dynamics in wide-band?gap crystals. Phys Rev B 1997;55:5799e810.
[76] Nolte S, Peschel U, Buschlinger R. Self-organized pattern formation in laser-induced multiphoton ionization. Phys Rev B 2014;89:184306.
[77] Liang F, Sun Q, Gingras D, Vallee R, Chin SL. The transition from smooth modi?cation to nanograting in fused silica. Appl Phys Lett 2010;96:101903.
[78] Nolte S, Peschel U, Buschlinger R. Self-organized pattern formation in laser-induced multiphoton ionization. Phys Rev B 2014;89:184306.
[79] Haodong WAJS. Formation of nanograting in fused silica by temporally delayed femtosecond double-pulse irradiation. J Phys Appl Phys 2018;51: 155101.
[80] Beresna M, Geceviicius M, Kazansky PG, Taylor T, Kavokin AV. Exciton mediated self-organization in glass driven by ultrashort light pulses. Appl Phys Lett 2012;101, 053120.
[81] Liao Y, Ni J, Qiao L, Huang M, Bellouard Y, Sugioka K, Cheng Y. High-?delity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation. Optica 2015;2:329e34.
[82] Zimmermann F, Plech A, Richter S, T¨¹nnermann A, Nolte S. The onset of ultrashort pulse-induced nanogratings. LASER PHOTONICS REV 2016;10: 327e34.
[83] Cao J, Mazerolles L, Lancry M, Solas D, Brisset F, Poumellec B. Form bire?fringence induced in multicomponent glass by femtosecond laser direct writing. Opt Lett 2016;41:2739e42.
[84] Cao J, Poumellec B, Mazerolles L, Brisset F, Helbert A, Surble S, He X, Lancry M. Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation. J Am Ceram Soc 2017;100:115e24.
[85] Shimotsuma Y, Mori S, Nakanishii Y, Kim E, Sakakura M, Miura K. Self-assembled glass/crystal periodic nanostructure in Al2O3-Dy2O3 binary glass. Appl Phys A 2018;124:82.
[86] Cao J, Mazerolles L, Lancry M, Brisset F, Poumellec B. Modi?cations in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure. J Opt Soc Am B 2017;34:160e8.
[87] Colombier J, Itina TE, Rudenko A. From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser. Phys Rev B 2016;93,
075427.
[88] Dai Y, Wu G, Lin X, Ma G, Qiu J. Femtosecond laser induced rotated 3D self-organized nanograting in fused silica. OPT EXPRESS 2012;20:18072e8.
[89] Liang F, Bouchard J, Leang Chin S, Vallee R. Defect-assisted local ?eld rear?rangement during nanograting formation with femtosecond pulses. Appl Phys Lett 2015;107, 061903.
[90] Richter S, Heinrich M, Zimmermann F, Vetter C, T¨¹nnermann A, Nolte S. Nanogratings in fused silica: structure, formation and applications. In: Progress in nonlinear nano-optics. Cham: Springer International Publishing; 2015. p. 49e71.
[91] Abgrall P, Nguyen NT. Nano?uidic devices and their applications. Anal Chem 2008;80:2326e41.
[92] Ross CA, MacLachlan DG, Choudhury D, Thomson RR. Optimisation of ul?trafast laser assisted etching in fused silica. OPT EXPRESS 2018;26: 24343e56.
[93] Yu X, Liao Y, He F, Zeng B, Cheng Y, Xu Z, Sugioka K, Midorikawa K. Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses. J Appl Phys 2011;109, 053114.
[94] Liao Y, Cheng Y, Liu C, Song J, He F, Shen Y, Chen D, Xu Z, Fan Z, Wei X, Sugioka K, Midorikawa K. Direct laser writing of sub-50 nm nano?uidic channels buried in glass for three-dimensional micro-nano?uidic integra?tion. Lab Chip 2013;13:1626e31.
[95] Liao Y, Shen Y, Qiao L, Chen D, Cheng Y, Sugioka K, Midorikawa K. Femto?second laser nanostructuring in porous glass with sub-50 nm feature sizes. Opt Lett 2013;38:187e9.
[96] Bricchi E, Mills JD, Kazansky PG, Klappauf BG, Baumberg JJ. Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining. Opt Lett 2002;27:2200e2.
[97] Mills JD, Kazansky PG, Bricchi E, Baumberg JJ. Embedded anisotropic microre?ectors by femtosecond-laser nanomachining. Appl Phys Lett 2002;81:196e8.
[98] Beresna M, Geceviicius M, Kazansky PG, Gertus T. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl Phys Lett 2011;98:201101.
[99] Drevinskas R, Kazansky PG. High-performance geometric phase elements in silica glass. APL Photonics 2017;2, 066104.
[100] Beresna M, Kazansky PG. Polarization diffraction grating produced by femtosecond laser nanostructuring in glass. Opt Lett 2010;35:1662e4.
[101] Beresna M, Geceviicius M, Kazansky PG. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited]. Opt Mater Express 2011;1:783e95.
[102] Zhang F, Cerkauskaite A, Drevinskas R, Kazansky PG, Qiu J. Microengineering of optical properties of GeO2 glass by ultrafast laser nanostructuring. ADV OPT MATER 2017;5:1700342.
[103] Geceviicius M, Drevinskas R, Beresna M, Kazansky PG. Single beam optical vortex tweezers with tunable orbital angular momentum. Appl Phys Lett 2014;104:231110.
[104] Lacraz A, Polis M, Theodosiou A, Koutsides C, Kalli K. Femtosecond laser inscribed bragg gratings in low loss CYTOP polymer optical ?ber. IEEE Photon Technol Lett 2015;27:693e6.
[105] Chah K, Kinet D, Wuilpart M, Megret P, Caucheteur C. Femtosecond-laser?induced highly birefringent Bragg gratings in standard optical ?ber. Opt Lett 2013;38:594e6.
[106] Li J, Ho S, Haque M, Herman PR. Nanograting Bragg responses of femto?second laser written optical waveguides in fused silica glass. Opt Mater Express 2012;2:1562e70.
[107] Lu J, Dai Y, Li Q, Zhang Y, Wang C, Pang F, Wang T, Zeng X. Fiber nanogratings induced by femtosecond pulse laser direct writing for in-line polarizer. NANOSCALE 2019. https://doi.org/10.1039/C8NR06078A.
[108] Shimotsuma Y, Sakakura M, Kazansky PG, Beresna M, Qiu J, Miura K, Hirao K. Ultrafast manipulation of self-assembled form birefringence in glass. Adv Mater 2010;22:4039e43.
[109] Geceviicius M, Beresna M, Kazansky PG, Zhang J. Seemingly unlimited life?time data storage in nanostructured glass. Phys Rev Lett 2014;112, 033901.
[110] Zimmermann F, Plech A, Richter S, T¨¹nnermann A, Nolte S. On the rewriting of ultrashort pulse-induced nanogratings. Opt Lett 2015;40:2049e52.
[111] Yang C, Qi D, Wang X, Cao F, He Y, Wen W, Jia T, Tian J, Sun Z, Gao L, Zhang S, Wang LV. Optimizing codes for compressed ultrafast photography by the genetic algorithm. Optica 2018;5:147e51.
[112] Liang J, Zhu L, Wang LV. Single-shot real-time femtosecond imaging of temporal focusing. Light Sci Appl 2018;7:42.
[113] Yamaji M, Kawashima H, Suzuki J, Tanaka S, Shimizu M, Hirao K, Shimotsuma Y, Miura K. Homogeneous and elongation-free 3D micro-fabrication by a femtosecond laser pulse and hologram. J Appl Phys 2012;111, 083107.
[114] Pan J, Jia T, Huo Y, Jia X, Feng D, Zhang S, Sun Z, Xu Z. Great enhancement of near band-edge emission of ZnSe two-dimensional complex nanostructures fabricated by the interference of three femtosecond laser beams. J Appl Phys 2013;114, 093102.
[115] Cheng H, Li P, Liu S, Chen P, Han L, Zhang Y, Hu W, Zhao J. Vortex-controlled morphology conversion of microstructures on silicon induced by femto?second vector vortex beams. Appl Phys Lett 2017;111:141901.

Memo

Memo:


Last Update: 2019-03-30