|Table of Contents|
[1].Synthesis and enhanced photocatalytic performance of Ag/AgCl/TiO2 nanocomposites prepared by ion exchange method[J].Journal of Materiomics,2018,(04):402-411.[doi:https://doi.org/10.1016/j.jmat.2018.06.002]
 Qionglian Yang,Mingyu Hu,Jun Guo,et al.Synthesis and enhanced photocatalytic performance of Ag/AgCl/TiO2 nanocomposites prepared by ion exchange method[J].Journal of Materiomics,2018,(04):402-411.[doi:https://doi.org/10.1016/j.jmat.2018.06.002]
Copy

Synthesis and enhanced photocatalytic performance of Ag/AgCl/TiO2 nanocomposites prepared by ion exchange method(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2018年04期
Page:
402-411
Research Field:
Publishing date:
2018-11-22

Info

Title:
Synthesis and enhanced photocatalytic performance of Ag/AgCl/TiO2 nanocomposites prepared by ion exchange method
Highlights:
Qionglian YangMingyu HuJun GuoZhenhua GeJing Feng
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
Keywords:
PhotocatalystAg/AgCl/TiO2StabilityNnanoscaleIon exchange method
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.06.002
Abstract:
Ag/AgCl/TiO2 nanocomposite was synthesized through the combination of sol-gel process and hydrothermal (HT) method followed by ion exchange method in the paper. Transmission electron microscope, UV-vis absorption property and X-ray diffraction were utilized to characterize the morphology, optical absorption property and phase structure of the as-prepared photocatalysts. The morphological and performance studies of Ag/AgCl/TiO2 revealed that a well-interconnected mixed phase heterojunction photocatalyst was achieved through as-prepared TiO2 and the subsequent ion exchange method. By the degradation of Rhodamine B under xenon lamp, Ag/AgCl/TiO2 exhibited a significant enhancement in photocatalytic activity compared with TiO2 and Ag/TiO2. The band gap of Ag/AgCl/TiO2 can reach to 2.53eV compared with 3.22eV of the prepared TiO2. Furthermore, the synthesis process and photoreaction mechanisms of TiO2, Ag/TiO2 and Ag/AgCl/TiO2 photocatalysts were proposed. It demonstrated that the enhancement of photocatalytic was mainly due to the reducing of electron-hole recombination in Ag/AgCl/TiO2.

References:

[1] J.X. Low, J.G. Yu, M. Jaroniec, S. Wageh, A.A. Al-GhamdiHeterojunction photocatalystsAdv Mater, 29 (20) (2017), p. 1601694
[2] H.L. Wang, L.S. Zhang, Z.G. Chen, J.Q. Hu, A.J. Li, Z.H. Wang, et al.Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performancesChen. Soc. Rev., 43 (15) (2014), pp. 5234-5244
[3] R. Libanori, T.R. Giraldi, E. Longgo, E. R.Leite, C. RibeiroEffect of TiO2 surface modification in Rhodamine B photodegradationJ Sol Gel Sci Technol, 19 (1) (2009), pp. 95-100
[4] A. Zielińska-Jurek, Z.S. Wei, I. Wysocka, P. Szweda, E. KowalskaThe effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalystsAppl Surf Sci, 353 (2015), pp. 317-325
[5] T.Y. Liu, B. Liu, L.F. Yang, X.L. Ma, H. Li, S. Yin, et al.RGO/Ag2 S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stabilityAppl Catal B Environ, 204 (2017), pp. 593-601
[6] S. Farsinezhad, S.P. Banerjee, B.B. Rajeeva, B. D.Wiltshire, H. Sharma, A. Sura, et al.Reduced ensemble plasmon line widths and enhanced two-photon luminescence in anodically formed high surface area Au-TiO2 3D nanocompositesACS Appl Mater Interfaces, 9 (1) (2016), pp. 740-749
[7] C.T. Dinh, H. Yen, F. Kleitz, T.O. DoThree-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysisAngew Chem Int Ed, 53 (26) (2014), pp. 6618-6623
[8] J.T. Zhang, X. Liu, X.Y. Suo, P.J. Li, B.K. Liu, H.Z. ShiFacile synthesis of Ag/AgCl/TiO2 plasmonic photocatalyst with efficiently antibacterial activityMater Lett, 198 (2017), pp. 164-167
[9] W.T. Liu, D.L. Chen, S.H. Yoo, S.O. ChoHierarchical visible-light-response Ag/AgCl@TiO2 plasmonic photocatalysts for organic dye degradationNanotechnology, 24 (40) (2013), p. 405706
[10] Z.H. Shah, J.S. Wang, Y.Z. Ge, C. Wang, W.X. Mao, S.F. ZhangHighly enhanced plasmonic photocatalytic activity of Ag/AgCl/TiO2 by CuO co-catalystJ Mater Chem A, 3 (7) (2015), pp. 3568-3575
[11] Z.H. Ge, Y.H. Ji, Y. Qiu, X.Y. Chong, J. Feng, J.Q. HeEnhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spilling during the spark plasma sintering processScripta Mater, 143 (2018), pp. 90-93
[12] L. Yang, X.Y. Ma, W.H. Zhang, W. GenAg@AgCl-TiO2/organic rectorite/quaternized chitosan microspheres: an efficient and environmental photocatalystJ Appl Polym Sci, 134 (2017), p. 44601
[13] J.B. Zhou, Y. Cheng, J.G. YuPreparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin filmsJ Photochem Photobiol, A, 223 (2) (2011), pp. 82-87ArticleDownload PDF
[14] L. Yang, F.Z. Wang, C. Shu, P. Liu, W.Q. Zhang, S.G. HuAn in-situ synthesis of Ag/AgCl/TiO2/hierarchical porous magnesian material and its photocatalytic performanceSci Rep-UK, 6 (2016), p. 21617
[15] W. Gan, X.C. Fu, J. ZahngAg@AgCl decorated graphene-like TiO2 nanosheets with nearly 100% exposed (001) facets for efficient solar light photocatalysisMater Sci Eng B, 229 (2018), pp. 44-52
[16] M.A. Mohamed, J. Jaafar, M.F. M.Zain, L.J. Minggu, M. B.Kassim, M.N.I. Salehmin, et al.Concurrent growth, structural and photocatalytic properties of hybridized C, N co-doped TiO2 mixed phase over g-C3N4 nanostructuredScripta Mater, 142 (2018), pp. 143-147
[17] G.X. Song, Z.Y. Chu, W.Q. Jin, H.Q. SunEnhanced performance of g-C3N4/TiO2 photocatalysts for degradation of organic pollutants under visible lightChin J Chem Eng, 23 (8) (2015), pp. 1326-1334
[18] Y.Z. Zhou, R. Chen, T.T. He, K. Xu, K. Du, N. Zhao, et al.Biomedical potential of ultrafine Ag/AgCl nanoparticles coated on graphene with special reference to antimicrobial performances and burn wound healingACS Appl Mater Interfaces, 8 (24) (2016), pp. 15067-15075
[19] N.D. Feng, Q. Wang, A. Zheng, Z.F. Zhang, J. Fan, S.B. Liu, et al.Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculationsJ Am Chem Soc, 135 (4) (2013), pp. 1607-1616
[20] D.F. Zhang, X.P. Pu, H.Y. Li, Y.M. Yu, J.J. Shim, P.Q. Cai, et al.Microwave-assisted combustion synthesis of Ag/ZnO nanocomposites and their photocatalytic activities under ultraviolet and visible-light irradiationMater Res Bull, 61 (2015), pp. 321-325ArticleDownload PDF
[21] Chong XY. WnagJ, R. Zhou, J. FengMicrostructure and thermal properties of RETaO4 (RE=Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materialsScripta Mater, 126 (2017), pp. 24-28
[22] X.M. Li, S.P. Lau, L.B. Tang, R.B. Ji, P.Z. YangMulticolour light emission from chlorine-doped graphene quantum dotsJ Mater Chem C, 1 (44) (2013), pp. 7308-7313
[23] M. Jakob, H. LevanonCharge distribution between UV-irradiated TiO2 and gold nanoparticles:? determination of shift in the fermi levelNano Lett, 3 (2003), pp. 353-358
[24] Y.P. Zhu, M. Li, Y.L. Liu, T.Z. Ren, Z.Y. YuanCarbon-doped ZnO hybridized homogeneously with graphitic carbon nitride nanocomposites for photocatalysisJ Phys Chem C, 118 (20) (2014), pp. 10963-10971
[25] H. Xu, H.M. Li, J.X. Xia, S. Yin, Z.J. Luo, L. Liu, et al.One-pot synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl in ionic liquidACS Appl Mater Interfaces, 3 (1) (2011), pp. 22-29
[26] M. Hamandi, G. Berhault, C. Guillard, H. KochkarReduced graphene oxide/TiO2 nanotube composites for formic acid photodegradationAppl Catal B Environ, 209 (2017), pp. 203-213
[27] D.T. Ma, Y.L. Li, J.B. Yang, H.G. Mi, S. Luo, L.B. Deng, et al.New strategy for polysulfide protection based on atomic layer deposition of TiO2 onto ferroelectric-encapsulated cathode: toward ultrastable free-standing room temperature sodium-sulfur batteriesAdv Funct Mater, 28 (11) (2018), p. 1705537
[28] B. Song, Q.J. Tang, Q.Q. Li, W.R. Wu, H.L. Zhang, J.L. Cao, et al.Template assisted synthesis of Ag/AgBr/AgCl hollow microspheres with heterojunction structure as highly activity and stability photocatalystMater Lett, 209 (2017), pp. 945-949
[29] I. Mora-Seró, J. BisquertFermi level of surface states in TiO2 nanoparticlesNano Lett, 3 (7) (2003), pp. 945-949
[30] J.C. Zhao, T.X. Wu, K.Q. Wu, K. Oikawa, H. Hidaka, N. SerponePhotoassisted degradation of dye pollutants. 3. Degradation of the cationic dye Rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation:? evidence for the need of substrate adsorption on TiO2 particlesEnviron Sci Technol, 32 (16) (1998), pp. 2394-2400
[31] K. Kasinathan, J. Kennedy, M. Elayaperumal, M. Henini, M. MalikPhotodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applicationsSci Rep-UK, 6 (38064) (2016), p. 38064
[32] E.T. Cui, G.X. LuModulating photogenerated electron transfer and hydrogen production rate by controlling surface potential energy on a selectively exposed Pt facet on Pt/TiO2 for enhancing hydrogen productionJ Phys Chem C, 117 (50) (2013), pp. 26415-26425
[33] J.X. Low, S.Q. Qiu, D.F. Xu, C.J. Jiang, B. ChengDirect evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reductionAppl Surf Sci, 434 (2018), pp. 423-432
[34] K.K. Paul, P.K. GiriRole of surface plasmons and hot electrons on the multi-step photocatalytic decay by defect enriched Ag@TiO2 nanorods under visible lightJ Phys Chem C, 121 (36) (2017), pp. 20016-20030
[35] R. Qiao, M.M. Mao, E.L. Hu, Y.J. Zhong, J.Q. Ning, Y. HuFacile formation of mesoporous BiVO4/Ag/AgCl heterostructured microspheres with enhanced visible-light photoactivityInorg Chem, 54 (18) (2015), pp. 9033-9039
[36] B.N. OnwuagbaThe electronic structure of AgF, AgCl and AgBrSolid State Commun, 97 (4) (1994), pp. 267-271
[37] S. Glaus, G. CalzaferriThe band structures of the silver halides AgF, AgCl, and AgBr: a comparative studyPhotochem Photobiol Sci, 2 (4) (2003), pp. 398-401
[38] J.G. Hou, Z. Wang, C. Yang, W.L. Zhou, S.Q. Jiao, H.M. ZhuHierarchically plasmonic Z-scheme photocatalyst of Ag/AgCl nanocrystals decorated mesoporous single-crystalline metastable Bi20TiO32 nanosheetsJ Phys Chem C, 117 (10) (2013), pp. 5132-5141
[39] X.Z. Liang, P. Wang, M.M. Li, Q.Q. Zhang, Z.Y. Wang, Y. Dai, et al.Adsorption of gaseous ethylene via induced polarization on plasmonic photocatalyst Ag/AgCl/TiO2 and subsequent photodegradationAppl Catal B Environ, 220 (2017), pp. 356-361View Record in Scopus
[40] T. Hirakawa, P. VKamatPhotoinduced electron storage and surface plasmon modulation in Ag@TiO2 clustersLangmuir, 20 (14) (2004), pp. 5645-5647
[41] X.J. Wan, T. Wang, Y.M. Dong, D.N. HeDevelopment and application of TiO2 nanoparticles coupled with silver halideJ Nanomater, 192 (2014), p. 9087852014
[42] H. Kokubo, Y. Oyama, Y. Majima, M. IwamotoInterfacial electronic density of states in phthalocyanine derivative Langmuir-blodgett films determined by surface potential measurementJ Appl Phys, 86 (7) (1999), pp. 3848-3852
[43] J.J. Ru, J. Feng, Y.H. Jiang, R. Zhou, Y.X. HuaEffects of ionic liquid additive [bmim]BF4 on fabrication of Ni-decorated Al2O3 powders by electroless depositionAdv Powder Technol, 28 (2) (2016), pp. 430-437
[44] L.X. Hu, G.H. Deng, W.C. Lu, S.W. Pang, X. HuDeposition of CdS nanoparticles on MIL-53 (Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiationAppl Surf Sci, 410 (2017), pp. 401-413

Memo

Memo:


Last Update: 2018-11-22