|Table of Contents|
[1].A flexible electromagnetic interference shielding film coated with a hybrid solder-magnetic powder mixture on a PET substrate[J].Journal of Materiomics,2018,(04):390-401.[doi:https://doi.org/10.1016/j.jmat.2018.08.002]
 Jae Hyang Leea,Dong Seok Kanga,Sang Hoon Kimb,et al.A flexible electromagnetic interference shielding film coated with a hybrid solder-magnetic powder mixture on a PET substrate[J].Journal of Materiomics,2018,(04):390-401.[doi:https://doi.org/10.1016/j.jmat.2018.08.002]
Copy

A flexible electromagnetic interference shielding film coated with a hybrid solder-magnetic powder mixture on a PET substrate(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2018年04期
Page:
390-401
Research Field:
Publishing date:
2018-11-22

Info

Title:
A flexible electromagnetic interference shielding film coated with a hybrid solder-magnetic powder mixture on a PET substrate
Highlights:
Jae Hyang Leea1Dong Seok Kanga1Sang Hoon KimbcMin-Jung SondJae Won ChoicDae Keun ChoicJoon-Phil ChoieClodualdo Aranas Jr.f
aMetal 3D Printing Convergence Research Team, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea; bMetal Powder Department, Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon-si, Gyeongsangnam-do, 51508, Republic of Korea; cDigital Manufacturing Process Group, Korea Institute of Industrial Technology, 113-58 Seohaean-ro, Siheung-si, Gyeonggi-do, 15014, Republic of Korea; dDepartment of Printed Electronics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea; eDepartment of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0C5, Canada; fMechanical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, New Brunswick, E3B 5A3, Canada
Keywords:
Flexible EMI shielding film PET substrate Solder arrays Magnetic particulates
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.08.002
Abstract:
A flexible electromagnetic interference (EMI) shielding film was innovatively fabricated using both low melting temperature solder arrays and amorphous soft magnet particulates consolidated on a polyethylene terephthalate (PET) substrate. First, the In-Sn-Bi solder arrays presented a low melting point of 99.4?°C, which enabled attachment to the heat-sensitive plastic substrate without any thermal damage, and a low electrical resistivity of 14.1?μΩ?cm, making them very effective at interrupting EM waves. Second, the solder arrays with a high thermal conductivity of 61.2?W/(m·K) at 298.15?K were also useful as a thermal conductor for a heat sink. Thus, the solder arrays provide efficient electrical and thermal channels for electron transport induced by abruptly or consistently created EM waves due to suddenly turning on and the long term operation of electronics, respectively. Third, the Fe-based magnetic particulates were added and resulted in effective saturation magnetization of 161.1 emu/g, remanence of 2.9 emu/g, and coercivity of 12.5?G, thus were able to disturb the EM pathway because of their soft magnetic properties. Consequently, the hybrid EMI shielding film with exceptionally high electrical and thermal conductivity and superior soft magnetic properties provided remarkable shielding effectiveness of 102.5?dB?at 10.2?GHz (X-band region).

References:

[1] F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, et al.Electromagnetic interference shielding with 2D transition metal carbides (MXenes)Science, 353 (2016), pp. 1137-1140
[2] Y. Li, Y.A. Samad, K. Polychronopoulou, K. LiaoLightweight and highly conductive aerogel-like carbon from sugarcane with superior mechanical and EMI shielding propertiesACS Sustainable Chem Eng, 3 (2015), pp. 1419-1427
[3] M. Verma, A.P. Singh, P. Sambyal, B.P. Singh, S. Dhawan, V. ChoudharyBarium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shieldingPhys Chem Chem Phys, 17 (2015), pp. 1610-1618
[4] S. Kim, S. Jo, K. Gueon, K. Choi, J. Kim, K. ChurnComplex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequenciesIEEE Trans Magn, 27 (1991), pp. 5462-5464
[5] F. Sharif, M. Arjmand, A.A. Moud, U. Sundararaj, E.P. RobertsSegregated hybrid poly (methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shieldingACS Appl Mater Interfaces, 9 (2017), pp. 14171-14179
[6] Y.W. Yun, S.W. Kim, G.Y. Kim, Y.B. Kim, Y.C. Yun, K.S. LeeElectromagnetic shielding properties of soft magnetic metal and ferrite composites for application to suppress noise in a radio frequency rangeJ Electroceram, 17 (2006), pp. 467-469
[7] M. Bayat, H. Yang, F. Ko, D. Michelson, A. MeiElectromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber compositePolymer, 55 (2014), pp. 936-943
[8] P.M. Ajayan, J.M. TourMaterials science: nanotube compositesNature, 447 (2007), pp. 1066-1068
[9] K.S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, K. KimA roadmap for grapheneNature, 490 (2012), pp. 192-200
[10] Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, et al.Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foamAdv Mater, 27 (2015), pp. 2049-2053
[11] H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, et al.Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensitiesAdv Mater, 26 (2014), pp. 8120-8125
[12] Z. Chen, C. Xu, C. Ma, W. Ren, H. ChengLightweight and flexible graphene foam composites for high-performance electromagnetic interference shieldingAdv Mater, 25 (2013), pp. 1296-1300
[13] Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, Z. ZhangLightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shieldingAdv Funct Mater, 26 (2016), pp. 303-310
[14] S.H. Kim, J. Choi, J. Yun, E. JeongBimodal NdNiAl and NdFeB hybrid catalytic and magnetic nanoparticles laminated on Fe foam: catalytic conversion of CO + 3H2 to CH4RSC Adv, 7 (2017), pp. 16709-16720
[15] S.H. Kim, Y. Nam, H. Lee, S. Back, M. Park, G.J. Jang, et al.Microstructural transformation and thermo-mechanical improvement of quinary Bi-Sn-In-Ga-Zn solder bumps on a flexible PET substrateMater Sci Eng, B, 224 (2017), pp. 93-102ArticleDownload PDF
[16] S.H. Kim, G. Shin, B. Kim, K.T. Kim, D. Yang, C. Aranas, et al.Thermo-mechanical improvement of Inconel 718 using ex situ boron nitride-reinforced composites processed by laser powder bed fusionSci Rep, 7 (2017), Article 14359
[17] H.B. Lee, Y.W. Kim, S.H. Kim, S.H. Park, J. Choi, C. Aranas Jr.A modular solder system with hierarchical morphology and backward compatibilitySmall (2018), Article 1801349
[18] S.H. Kim, T. Min, J.W. Choi, S.H. Baek, J. Choi, C. AranasTernary Bi2Te3In2Te3Ga2Te3 (n-type) thermoelectric film on a flexible PET substrate for use in wearablesEnergy, 144 (2018), pp. 607-618
[19] S.H. Kim, K.N. Hui, Y. Kim, T. Lim, D. Yang, K.B. Kim, et al.Oxidation resistant effects of Ag2S in Sn-Ag-Al solder: a mechanism for higher electrical conductivity and less whisker growthCorrosion Sci, 105 (2016), pp. 25-35ArticleDownload PDF
[20] S.H. Kim, D. Yang, Y. Kim, T. Min, J. Choi, J. Yun, et al.Thermo-mechanical evolution of ternary Bi-Sn-In solder micropowders and nanoparticles reflowed on a flexible PET substrateAppl Surf Sci, 415 (2017), pp. 28-34ArticleDownload PDF
[21] S.H. Kim, M. Park, J. Choi, C. Aranas Jr.Improved electrical and thermo-mechanical properties of a MWCNT/In-Sn-Bi composite solder reflowing on a flexible PET substrateSci Rep, 7 (2017), Article 13756
[22] S.H. Kim, J. Choi, Y. Eom, Y. Nam, S. Baek, C. AranasA phenomenological study of a Sn-Ag-Al composite solder reinforced with Mg-MWCNT: improved electrical conductivity and thermo-physical performanceMater Des, 140 (2018), pp. 196-208
[23] B. Zheng, Y. Lin, Y. Zhou, E.J. LaverniaGas atomization of amorphous aluminum powder: Part II. Experimental investigationMetall Mater Trans B, 40 (2009), pp. 995-1004
[24] J. Xian, S. Belyakov, M. Ollivier, K. Nogita, H. Yasuda, C. GourlayCu6Sn5 crystal growth mechanisms during solidification of electronic interconnectionsActa Mater, 126 (2017), pp. 540-551
[25] T. Laurila, V. Vuorinen, M. Paulasto-Kr?ckelImpurity and alloying effects on interfacial reaction layers in Pb-free solderingMater Sci Eng R Rep, 68 (2010), pp. 1-38
[26] L. Zhang, K. TuStructure and properties of lead-free solders bearing micro and nano particlesMater Sci Eng R Rep, 82 (2014), pp. 1-32ArticleDownload PDF
[27] J. Kim, S. JungCharacterization of the shear test method with low melting point In-48Sn solder jointsMater Sci Eng, 397 (2005), pp. 145-152
[28] A. El-Sayed, H.S. Mohran, H.M.A. El-LateefThe inhibition effect of 2,4,6-tris (2-pyridyl)-1,3,5-triazine on corrosion of tin, indium and tin-indium alloys in hydrochloric acid solutionCorrosion Sci, 52 (2010), pp. 1976-1984
[29] E. ?ztürk, S. Aks?z, K. Ke?lio?lu, N. Mara?l?The measurement of thermal conductivity variation with temperature for Sn-20wt.% in based lead-free ternary soldersThermochim Acta, 554 (2013), pp. 63-70
[30] D. Kim, W. Kim, E. Park, N. Mattern, J. EckertPhase separation in metallic glassesProg Mater Sci, 58 (2013), pp. 1103-1172
[31] Y. Li, G. Chen, Q. Li, G. Qiu, X. LiuFacile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocompositeJ Alloy Comp, 509 (2011), pp. 4104-4107
[32] C. Cui, Y. Du, T. Li, X. Zheng, X. Wang, X. Han, et al.Synthesis of electromagnetic functionalized Fe3O4 microspheres/polyaniline composites by two-step oxidative polymerizationJ Phys Chem B, 116 (2012), pp. 9523-9531
[33] S. Varshney, A. Ohlan, V.K. Jain, V.P. Dutta, S.K. DhawanIn situ synthesis of polypyrrole-γ-Fe2O3-fly ash nanocomposites for protection against EMI pollutionInd Eng Chem Res, 53 (2014), pp. 14282-14290
[34] N. Gandhi, K. Singh, A. Ohlan, D. Singh, S. DhawanThermal, dielectric and microwave absorption properties of polyaniline-CoFe2O4 nanocompositesCompos Sci Technol, 71 (2011), pp. 1754-1760
[35] A. Ohlan, K. Singh, A. Chandra, V. Singh, S. DhawanConjugated polymer nanocomposites: synthesis, dielectric, and microwave absorption studiesJ Appl Phys, 106 (2009), Article 044305
[36] Y. Yang, B. Zhang, W. Xu, Y. Shi, N. Zhou, H. LuMicrowave absorption studies of W-hexaferrite prepared by co-precipitation/mechanical millingJ Magn Magn Mater, 265 (2003), pp. 119-122
[37] C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, et al.Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic propertiesJ Phys Chem C, 114 (2010), pp. 3196-3203
[38] A. Ohlan, K. Singh, A. Chandra, S. DhawanMicrowave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4-18 GHzAppl Phys Lett, 93 (2008), Article 053114
[39] C. Cui, D. Yan, H. Pang, L. Jia, X. Xu, S. Yang, et al.A high heat-resistance bioplastic foam with efficient electromagnetic interference shieldingChem Eng J, 323 (2017), pp. 29-36
[40] Y. Han, Y. Liu, L. Han, J. Lin, P. JinHigh-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shieldingCarbon, 115 (2017), pp. 34-42
[41] S. Lee, D. Kang, I. OhMultilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding filmCarbon, 111 (2017), pp. 248-257
[42] X. Hong, D. ChungCarbon nanofiber mats for electromagnetic interference shieldingCarbon, 111 (2017), pp. 529-537
[43] H. Zhao, L. Hou, Y. LuElectromagnetic shielding effectiveness and serviceability of the multilayer structured cuprammonium fabric/polypyrrole/copper (CF/PPy/Cu) compositeChem Eng J, 297 (2016), pp. 170-179
[44] Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, et al.Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shieldingACS Appl Mater Interfaces, 9 (2017), pp. 9059-9069
[45] R. Kumaran, S.D. Kumar, N. Balasubramanian, M. Alagar, V. Subramanian, K. DinakaranEnhanced electromagnetic interference shielding in a Au-MWCNT composite nanostructure dispersed PVDF thin filmsJ Phys Chem C, 120 (2016), pp. 13771-13778

Memo

Memo:


Last Update: 2018-11-22