|Table of Contents|
[1].Phonon characteristics and dielectric properties of BaMoO4 ceramic[J].Journal of Materiomics,2018,(04):383-389.[doi:https://doi.org/10.1016/j.jmat.2018.08.004]
 En-CaiXiaoa,Jianzhu Lia,Jing Wanga,et al.Phonon characteristics and dielectric properties of BaMoO4 ceramic[J].Journal of Materiomics,2018,(04):383-389.[doi:https://doi.org/10.1016/j.jmat.2018.08.004]
Copy

Phonon characteristics and dielectric properties of BaMoO4 ceramic(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2018年04期
Page:
383-389
Research Field:
Publishing date:
2018-11-22

Info

Title:
Phonon characteristics and dielectric properties of BaMoO4 ceramic
Highlights:
En-CaiXiaoa1Jianzhu Lia1Jing Wanga1Chao XingaMei GuocHengyang QiaoaQing WangaZe-Ming QibGang DoucFeng Shia
aSchool of Material Science & Engineering, Shandong University of Science and Technology, Qingdao, 266590, China;bNational Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China;cCollege of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, China
Keywords:
Microwave dielectric ceramicBaMoO4Crystal structureDielectric propertiesPhonon characteristics
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.08.004
Abstract:
BaMoO4 ceramic was prepared using a conventional solid-sintering method. It was observed that the sample is a pure BaMoO4 with a tetragonal scheelite structure by analyzing X-ray diffraction data. Scanning electron microscopy characterized the dense sample with uniform grains. The phonon modes were analyzed by Raman and Far-infrared reflection spectra, and the phonon characteristics were studied. The intrinsic properties of the sample were calculated by the four-parameter semi-quantum model as well as the Clausius-Mosotti & damping equations, and the results were of εr?=?9.388 and tanδ?=?4.760?×?10?4, εr?=?9.798 and tanδ?=?6.445?×?10?4, respectively, which agrees well with the experimental values (εr?=?9.84, tanδ?=?5.0?×?10?4). The contributions to dielectric properties of each mode were investigated, and the results indicate that the external mode (Eu) yield greatest contribution to intrinsic permittivity and loss.

References:

[1] H. Qiao, H. Sun, J. Li, H. Chen, C. Xing, J. Yang, H. Dong, J. Wang, X. Yin, Z.M. QiStructure, intrinsic properties and vibrational spectra of Pr(Mg1/2Sn1/2)O3 ceramic crystalSci Rep, 7 (1) (2017)
[2] F. Shi, H. Sun, H. Liu, G. Xu, J. Wang, Y. HanCorrelation among far-infrared reflection modes, crystal structures and dielectric properties of Ba(Zn1/3Nb2/3)O3 -CaTiO3 ceramicsMater Res Bull, 75 (2016), pp. 115-120
[3] C. Xing, J. Li, H. Chen, H. Qiao, J. Yang, H. Dong, H. Sun, J. Wang, X. Yin, Z.M. QiPhonon characteristics, crystal structure, and intrinsic properties of a Y(Mg1/2Sn1/2)O3 ceramicRSC Adv, 7 (56) (2017), pp. 35305-35310
[4] B. Liu, L. Li, X.Q. Liu, X.M. ChenStructural evolution of SrLaAl1-x(Zn0.5Ti0.5)xO4 ceramics and effects on their microwave dielectric propertiesJ Mater Chem C, 4 (21) (2016)
[5] J. Zhang, Z. Yue, Y. Luo, X. Zhang, L. LiNovel low-firing forsterite-based microwave dielectric for LTCC applicationsJ Am Ceram Soc, 99 (4) (2016), pp. 1122-1124
[6] G.K. Choi, J.R. Kim, S.H. Yoon, K.S. HongMicrowave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compoundsJ Eur Ceram Soc, 27 (8-9) (2007), pp. 3063-3067
[7] E.S. Kim, B.S. Chun, R. Freer, R.J. CernikEffects of packing fraction and bond valence on microwave dielectric properties of ABO (A: Ca, Pb, Ba; B: Mo, W) ceramicsJ Eur Ceram Soc, 30 (7) (2010), pp. 1731-1736
[8] L.X. Pang, D. Zhou, W.G. LiuLow-temperature sintering and microwave dielectric properties of CaMoO4 -based temperature stable LTCC materialJ Am Ceram Soc, 97 (7) (2014), pp. 2032-2034
[9] M.T. Sebastian, H. JantunenLow loss dielectric materials for LTCC applications: a reviewMetall Rev, 53 (2) (2008), pp. 57-90
[10] L.X. Pang, H. Liu, D. Zhou, G.B. Sun, W.G. Qin, W.G. LiuMicrowave dielectric ceramic with intrinsic low firing temperature: BaLa2(MoO4)4Mater Lett, 72 (4) (2012), pp. 128-130
[11] J. Guo, D. Zhou, H. Wang, Y. Chen, Y. Zeng, F. Xiang, Y. Wu, X. YaoMicrowave and infrared dielectric response of temperature stable (1?x)BaMoO4-xTiO2 composite ceramicsJ Am Ceram Soc, 95 (1) (2012), pp. 232-237
[12] S. Jiang, Z. Yue, F. ShiEffects of BaWO4 additive on Raman phonon modes and structure-property relationship of Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramicsJ Alloy Comp, 646 (2015), pp. 49-55
[13] H. Zhang, C. Diao, S. Liu, S. Jiang, X. Jing, F. ShiXRD and Raman study on crystal structures and dielectric properties of Ba[Mg(1?x)/3ZrxNb2(1?x)/3]O3 solid solutionsCeram Int, 40 (1) (2014), pp. 2427-2434
[14] L.X. Pang, D. Zhou, Z.M. Qi, W.G. Liu, Z.X. Yue, I.M. ReaneyStructure-property relationships of low sintering temperature scheelite-structured (1?x)BiVO4-xLaNbO4 microwave dielectric ceramicsJ Mater Chem C, 5 (10) (2017)
[15] H. Zhang, C. Diao, S. Liu, S. Jiang, F. Shi, X. JingX-ray diffraction and Raman scattering investigations on Ba[Mg(1?x)/3ZrxTa2(1?x)/3]O3 solid solutionsJ Alloy Comp, 587 (3) (2014), pp. 717-723
[16] J. Guo, D. Zhou, H. Wang, Y. Chen, Y. Zeng, F. Xiang, Y. Wu, X. YaoMicrowave and infrared dielectric response of temperature stable (1?x)BaMoO4-xTiO2 composite ceramicsJ Am Ceram Soc, 95 (1) (2012), pp. 232-237
[17] H.H. Xi, D. Zhou, H.D. Xie, B. He, Q.P. WangRaman spectra, infrared spectra, and microwave dielectric properties of low-temperature firing [(Li0.5Ln0.5)1?xCax]MoO4 (Ln = Sm and Nd) solid solution ceramics with scheelite structureJ Am Ceram Soc, 98 (2) (2015), pp. 587-593
[18] W.E. CourtneyAnalysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulatorsIEEE Trans Microw Theor Tech, 18 (8) (1970), pp. 476-485
[19] M.C. Oliveira, L. Gracia, I.C. Nogueira, M.F.C. Gurgel, J.M.R. Mercury, E. Longo, J. AndrésOn the morphology of BaMoO4 crystals: a theoretical and experimental approachCryst Res Technol, 51 (10) (2016), pp. 634-644
[20] R. Baddour-Hadjean, J.P. Pereira-RamosRaman microspectrometry applied to the study of electrode materials for lithium batteriesChem Rev, 110 (3) (2010), pp. 1278-1319
[21] T.T. Basiev, A.A. Sobol, Y.K. Voronko, P.G. ZverevSpontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasersOpt Mater, 15 (3) (2000), pp. 205-216
[22] L.S. Cavalcante, J.C. Sczancoski, R.L. Tranquilin, M.R. Joya, P.S. Pizani, J.A. Varela, E. LongoBaMoO4 powders processed in domestic microwave-hydrothermal: synthesis, characterization and photoluminescence at room temperatureJ Phys Chem Solid, 69 (11) (2008), pp. 2674-2680
[23] S.P.S. Porto, J.F. ScottRaman spectra of CaWO4 , SrWO4 , CaMoO4 , and SrMoO4Phys Rev, 157 (3) (1967), pp. 716-719
[24] Q. Gong, X. Qian, H. Cao, W. Du, X. Ma, M. MoNovel shape evolution of BaMoO4 microcrystalsJ Phys Chem B, 110 (39) (2006), pp. 19295-19299
[25] T. Thongtem, A. Phuruangrat, S. ThongtemSonochemical synthesis of MMoO4 (M = Ca, Sr and Ba) nanocrystalsJ Ceram Process Res, 9 (2) (2008), pp. 189-191View Record in Scopus
[26] A.P.D.A. Marques, D.M.A.D. Melo, C.A. Paskocimas, P.S. Pizani, M.R. Joya, E.R. Leite, E. LongoPhotoluminescent BaMoO4 nanopowders prepared by complex polymerization method (CPM)J Solid State Chem, 179 (3) (2006), pp. 671-678
[27] C.L. Diao, C.H. Wang, N.N. Luo, Z.M. QiFirst-Principle calculation and assignment for vibrational spectra of Ba(Mg1/2W1/2)O3 microwave dielectric ceramicJ Am Ceram Soc, 96 (9) (2013), pp. 2898-2905
[28] C.L. Diao, C.H. Wang, N.N. Luo, Z.M. Qi, T. Shao, Y.Y. Wang, J. Lu, Q.C. Wang, X.J. Kuang, L. FangFirst-principle calculation and assignment for vibrational spectra of Ba(Mg1/3Nb2/3)O3 microwave dielectric ceramicJ Appl Phys, 115 (11) (2014), pp. 787-791
[29] R.D. ShannonDielectric polarizabilities of ions in oxides and fluoridesJ Appl Phys, 73 (1) (1993), pp. 348-366

Memo

Memo:


Last Update: 2018-11-22