|Table of Contents|
[1].Influence of (Mg1/3Nb2/3) complex substitutions on crystal structures and microwave dielectric properties of Li2TiO3 ceramics with extreme low loss[J].Journal of Materiomics,2018,(04):368-382.[doi:https://doi.org/10.1016/j.jmat.2018.09.002]
 Huan-Huan Guoa,Di Zhoua,Li-Xia Pangb,et al.Influence of (Mg1/3Nb2/3) complex substitutions on crystal structures and microwave dielectric properties of Li2TiO3 ceramics with extreme low loss[J].Journal of Materiomics,2018,(04):368-382.[doi:https://doi.org/10.1016/j.jmat.2018.09.002]
Copy

Influence of (Mg1/3Nb2/3) complex substitutions on crystal structures and microwave dielectric properties of Li2TiO3 ceramics with extreme low loss(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2018年04期
Page:
368-382
Research Field:
Publishing date:
2018-11-22

Info

Title:
Influence of (Mg1/3Nb2/3) complex substitutions on crystal structures and microwave dielectric properties of Li2TiO3 ceramics with extreme low loss
Highlights:
Huan-Huan GuoaDi ZhouaLi-Xia PangbJin-Zhan Suc
aElectronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China;bMicro-optoelectronic Systems Laboratories, Xi'an Technological University, Xi'an, 710032, Shaanxi, China;cInternational Research Centre for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
Keywords:
Microwave dielectric propertiesPhase evolutionCrystal structureHigh quality
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.09.002
Abstract:
A systematic investigation of the Li2Ti1-x(Mg1/3Nb2/3)xO3 (0.1?≤?x?≤?0.35) solid solutions synthesized by traditional solid-state reaction method is reported in this work. In the composition range of 0.1?≤?x?≤?0.25, a monoclinic rock salt structured solid solution was formed. When x increased to 0.3, a phase transition from monoclinic to cubic phase, along with an order-disorder phase transition, was observed. With x increased from 0.1 to 0.35, the microwave permittivity (εr) and temperature coefficient of resonant frequency (TCF) of the Li2Ti1-x(Mg1/3Nb2/3)xO3 ceramics decreased linearly from 21.0 to 18.6, +27.1 to ?19.4 ppm/°C, respectively. The Li2Ti0.75(Mg1/3Nb2/3)0.25O3 ceramic sintered at 1170?°C shows high performance of microwave dielectric properties with a εr ?19.6, a Qf (Q = quality factor = 1/dielectric loss; f = resonant frequency) ?109,770 GHz (at 7.7 GHz) and a near zero TCF ? + 1.2 ppm/oC. Moreover, the burying sintering process can reduce the volatilization of lithium so that the porosity of Li2Ti0.75(Mg1/3Nb2/3)0.25O3 ceramic was reduced effectively, which made Li2Ti0.75(Mg1/3Nb2/3)0.25O3 ceramic promising for future applications. Selected area electron diffraction patterns, high-resolution transmission electron microscopy, Raman and far-infrared spectra were employed to study the relation between crystal structure and microwave dielectric properties in detail.

References:

[1] S.T. Murphy, N.D.M. HinePoint defects and non-stoichiometry in Li2TiO3Chem Mater, 26 (4) (2014), pp. 1629-1638
[2] K. Kataoka, Y. Takahashi, N. Kijima, H. Nagai, J. Akimoto, Y. Idemoto, et al.Crystal growth and structure refinement of monoclinic Li2TiO3Mater Res Bull, 44 (1) (2009), pp. 168-172
[3] M. Kobayashi, K. Kawasaki, T. Fujishima, Y. Miyahara, Y. Oya, K. OkunoRelease kinetics of tritium generated in lithium-enriched Li2+xTiO3 by thermal neutron irradiationFusion Eng Des, 87 (5-6) (2012), pp. 471-475
[4] J.F. Dorrian, R.E. NewnhamRefinement of the structure of Li2TiO3Mater Res Bull, 4 (3) (1969), pp. 179-183
[5] K. Kondo, Y. Tatebe, K. Ochiai, S. Sato, K. Takakura, S. Ohnishi, et al.Measurement of TPR distribution in natural Li2TiO3/Be assembly with DT neutronsFusion Eng Des, 85 (7-9) (2010), pp. 1229-1233
[6] T.V. Kulsartov, Y.N. Gordienko, I.L. Tazhibayeva, E.A. Kenzhin, N.I. Barsukov, A.O. Sadvakasova, et al.Tritium migration in the materials proposed for fusion reactors: Li2TiO3 and berylliumJ Nucl Mater, 442 (1-3) (2013), pp. S740-S745
[7] R.E. Avila, L.A. Pe?a, J.C. JiménezSurface desorption and bulk diffusion models of tritium release from Li2TiO3 and Li2ZrO3 pebblesJ Nucl Mater, 405 (3) (2010), pp. 244-251
[8] L. Zhang, T. Muta, H. Noguchi, X. Wang, M. Zhou, M. YoshioPeculiar electrochemical behaviors of (1 ?x)LiNiO2-xLi2TiO3 cathode materials prepared by spray dryingJ Power Sources, 117 (1-2) (2003), pp. 137-142
[9] M. Mohapatra, Y.P. Naik, V. Natarajan, T.K. Seshagiri, Z. Singh, S.V. GodboleRare earth doped lithium titanate (Li2TiO3) for potential phosphor applicationsJ Lumin, 130 (12) (2010), pp. 2402-2406
[10] V. Chauvaut, M. CassirBehaviour of titanium species in molten Li2CO3 +Na2CO3 and Li2CO3 +K2CO3 in the anodic conditions used in molten carbonate fuel cells ☆ : II. Electrochemical intercalation of Li+ in Li2TiO3 at 600 and 650 °CJ Electroanal Chem, 474 (1) (1999), pp. 9-15
[11] L.F. Zhang, B.Z. Chen, X.C. Shi, L.W. Ma, Y. ChenSynthesis and adsorption property of H2TiO3 type adsorbentChin J Nonferrous Met, 20 (9) (2010), pp. 1849-1854View Record in Scopus
[12] J. Liang, W.Z. LuMicrowave dielectric properties of Li2TiO3 ceramics doped with ZnO-B2O3 fritJ Am Ceram Soc, 92 (4) (2009), pp. 952-954
[13] L.X. Pang, D. ZhouMicrowave dielectric properties of low-firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3-CuO additionJ Am Ceram Soc, 93 (11) (2010), pp. 3614-3617
[14] F. Zhao, Z. Yue, Y. Zhang, Z. Gui, L. LiMicrostructure and microwave dielectric properties of Ca[Ti1-x(Mg1/3Nb2/3)x]O3 ceramicsJ Eur Ceram Soc, 25 (14) (2005), pp. 3347-3352
[15] J.J. Wang, C.L. HuangNew dielectric materials of xSrTiO3-(1-x)Ca(Mg1/3Nb2/3)O3 ceramic system at microwave frequencyMater Lett, 60 (9-10) (2006), pp. 1280-1283
[16] H. Bagshaw, D. Iddles, R. Quimby, I.M. ReaneyStructure-property relations in xCaTiO3-(1?x)SrMg1/3Nb2/3O3 based microwave dielectricsJ Eur Ceram Soc, 23 (14) (2003), pp. 2435-2441
[17] G.H. Chen, J.C. Di, H.R. Xu, M.H. Jiang, C.L. YuanMicrowave dielectric properties of Ca4La2Ti5?x(Mg1/3Nb2/3)xO17 ceramicsJ Am Ceram Soc, 95 (4) (2012), pp. 1394-1397
[18] C.L. Huang, H.L. Chen, C.C. WuImproved high Q value of CaTiO3 -Ca(Mg1/3Nb2/3)O3 solid solution with near zero temperature coefficient of resonant frequencyMater Res Bull, 36 (9) (2001), pp. 1645-1652
[19] M.K. Du, L.X. Li, S.H. Yu, Z. Sun, J.L. QiaoHigh-Q microwave ceramics of Li2TiO3 co-doped with magnesium and niobiumJ Am Ceram Soc, 101 (2018), pp. 4066-4075
[20] J.J. Bian, X.H. ZhangStructural evolution, grain growth kinetics and microwave dielectric properties of Li2Ti1-x(Mg1/3Nb2/3)xO3J Eur Ceram Soc, 38 (2) (2018), pp. 599-604
[21] R.D. ShannonDielectric polarizabilities of ions in oxides and fluoridesJ Appl Phys, 73 (1) (1993), pp. 348-366
[22] C.L. Huang, Y.W. Tseng, J.Y. ChenHigh- Q dielectrics using ZnO-modified Li2TiO3 ceramics for microwave applicationsJ Eur Ceram Soc, 32 (12) (2012), pp. 3287-3295
[23] K. Tsuchiya, H. KawamuraDevelopment of wet process with substitution reaction for the mass production of Li2TiO3 pebblesJ Nucl Mater, s283-287 (1) (2000), pp. 1380-1384
[24] L. Zhang, X. Wang, H. Noguchi, M. Yoshio, K. Takada, T. SasakiElectrochemical and ex situ XRD investigations on (1?x)LiNiO2·xLiTiO3 (0.05≤ x ≤ 0.5)Electrochim Acta, 49 (20) (2004), pp. 3305-3311
[25] P. Steiner, H. H?chstX-ray excited photoelectron spectra of LiNbO3: a quantitative analysisZ Phys B, 35 (1) (1979), pp. 51-59
[26] H. Seyama, M. SomaX-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cationsJ Chem Soc, Faraday Trans, 80 (80) (1984), pp. 237-248
[27] H. Ikawa, T. Yamada, K. Kojima, S. MatsumotoX-ray photoelectron spectroscopy study of high- and low-temperature forms of zirconium titanateJ Am Ceram Soc, 74 (6) (2010), pp. 1459-1462
[28] R.P. VasquezSrTiO3 by XPSSurf Sci Spectra, 1 (1) (1992), pp. 129-135
[29] S.F. Ho, S. Contarini, J.W. RabalaisIon-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalumJ Phys Chem, 91 (18) (1987), pp. 4779-4788

Memo

Memo:


Last Update: 2018-11-22