|Table of Contents|
[1].Ferroelectric, magnetic, and optical properties of Aurivillius compound Bi5FeTi2.5Co0.5O15[J].Journal of Materiomics,2018,(04):353-359.[doi:https://doi.org/10.1016/j.jmat.2018.09.005]
 Hui Suna,Yuying Wua,Xi Xiea,et al.Ferroelectric, magnetic, and optical properties of Aurivillius compound Bi5FeTi2.5Co0.5O15[J].Journal of Materiomics,2018,(04):353-359.[doi:https://doi.org/10.1016/j.jmat.2018.09.005]
Copy

Ferroelectric, magnetic, and optical properties of Aurivillius compound Bi5FeTi2.5Co0.5O15(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2018年04期
Page:
353-359
Research Field:
Publishing date:
2018-11-22

Info

Title:
Ferroelectric, magnetic, and optical properties of Aurivillius compound Bi5FeTi2.5Co0.5O15
Highlights:
Hui Suna1Yuying Wua1Xi XieaYuxi LuaTianshu YaoaJiansheng ZhongaXiaobing Chenb
aCollege of Physics Science and Technology, Yangzhou University, Yangzhou, 225002, China;bGuangling College of Yangzhou University, Yangzhou, 225002, China
Keywords:
Aurivillius phaseWeak ferromagnetismOptical propertiesCo-doping
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.09.005
Abstract:
Bi5FeTi2.5Co0.5O15 (BFTC) ceramics was successfully synthesized using the sol-gel method. It exhibits simultaneously visible-light response, ferroelectric and weak ferromagnetic orders at room temperature. The narrow band gap of 2.06 eV was determined via the UV-vis diffuse absorption spectrum. The x-ray photoelectron spectroscopy results show that the Fe ions in the samples is 3 + and 2 + valence states while the doped Co ions is 2 + valence state. The BFTC sample undergoes a ferromagnetic-like transition at ?552 K. Weak ferromagnetism is mainly due to spin-canting of Fe-based and Co-based sublattices via Dzyaloshinskii-Moriya (DM) interaction. Dielectric loss and dielectric modulus exhibit the characteristics of dielectric relaxation, which can be ascribed to oxygen?vacancy hopping. These results reveal many potentially useful physical phenomena and open a new avenue to design of novel solar-energy conversion devices and multiferroic applications.

References:

[1] W. Eerenstein, N.D. Mathur, J.F. ScottMultiferroic and magnetoelectric materialsNature (London), 442 (2006), pp. 759-765
[2] S.W. Cheong, M. MostovoyMultiferroics: a magnetic twist for ferroelectricityNat Mater, 6 (2006), pp. 13-20View Record in Scopus
[3] R. Ramesh, N.A. SpaldinMultiferroics: progress and prospects in thin filmsNat Mater, 6 (2007), p. 21
[4] L. Keeney, P.F. Zhang, C. Groh, M.E. PembleJ Appl Phys Piezoresponse force microscopy investigations of Aurivillius phase thin films, 108 (2010)042004
[5] Z. Zhou, W. Sun, Z.Y. Liao, S. Ning, J. Zhu, J.F. LiFerroelectric domains and phase transition of sol-gel processed epitaxial Sm-doped BiFeO3 (00l) thin filmsJ Materiomics, 4 (2018), pp. 27-34
[6] Y.W. Yin, Q. LiA review on all-perovskite multiferroic tunnel junctionsJ Materiomics, 3 (2017), pp. 245-254
[7] B. AurivilliusMixed bismuth oxides with layer lattices 1: the structure type of CaNb2Bi2O9Ark Kemi, 1 (1950), pp. 463-480View Record in Scopus
[8] B. AurivilliusMixed bismuth oxides with layer lattices 2: structure of Bi4Ti3O12Ark Kemi, 1 (1950), pp. 499-512View Record in Scopus
[9] Z. Liu, J. Yang, X.W. Tang, L.H. Yin, X.B. Zhu, J.M. Dai, Y.P. SunMultiferroic properties of Aurivillius phase Bi6Fe2-xCoxTi3O18 thin films prepared by a chemical solution deposition routeAppl Phys Lett, 101 (2012), p. 122402
[10] X.Y. Mao, W. Wang, X.B. Chen, Y.L. LuMultiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O15 ceramicsAppl Phys Lett, 95 (2009)082901
[11] F.Z. Huang, X.M. Lu, T.T. Xu, Y.Y. Liu, W.N. Su, Y.M. Jin, Y. Kan, J.S. ZhuMultiferroic properties of Co and Nd co-substituted Bi5Ti3FeO15 thin filmsThin Solid Films, 520 (2012), pp. 6489-6492
[12] X.W. Dong, K.F. Wang, J.G. Wan, J.S. Zhu, J.M. LiuMagnetocapacitance of polycrystalline Bi5Ti3FeO15 prepared by sol-gel methodJ Appl Phys, 103 (2008)094101
[13] R.S. Singh, T. Bhimasankaram, G.S. Kumar, S.V. SuryanarayanaDielectric and magnetoelectric properties of Bi5Ti3FeO15Solid State Commun, 91 (1994), pp. 567-569
[14] W. Bai, J.Y. Zhu, J.L. Wang, T. Lin, J. Yang, X.J. Meng, X.D. Tang, Z.Q. Zhu, J.H. ChuEffects of annealing temperature on the structures, ferroelectric and magnetic properties of Aurivillius Bi5Ti3FeO15 polycrystalline filmsJ Magn Magn Mater, 324 (2012), pp. 2265-2270
[15] H. Sun, X.M. Lu, J. Su, T.T. Xu, C.C. Ju, F.Z. Huang, J.S. ZhuMultiferroic behaviour and the magneto-dielectric effect in Bi5FeTi3O15 thin filmsJ Phys D Appl Phys, 45 (2012), p. 385001
[16] A. Srinivas, S.V. Suryanarayana, G.S. Kumar, M.M. KumarMagnetoelectric measurements on Bi5FeTi3O15 and Bi6Fe2Ti3O18J Phys Condens Matter, 11 (1999), pp. 3335-3340
[17] Y.Y. Wu, T.S. Yao, Y.X. Lu, B.W. Zou, X.Y. Mao, F.Z. Huang, H. Sun, X.B. ChenMagnetic, dielectric, and magnetodielectric properties of Bi-layered perovskite Bi4.25Gd0.75Fe0.5Co0.5Ti3O15J Mater Sci, 52 (2017), pp. 7360-7368
[18] X.N. Li, Z. Zhu, F. Li, R.R. Peng, X.F. Zhai, Z.P. Fu, Y.L. LuFacile route to prepare grain-oriented multiferroic Bi7Fe3-xCoxTi3O21 ceramicsJ Eur Ceram Soc, 35 (2015), pp. 3437-3443
[19] B. Yuan, J. Yang, J. Chen, X.Z. Zuo, L.H. Yin, X.W. Tang, X.B. Zhu, J.M. Dai, W.H. Song, Y.P. SunMagnetic and dielectric properties of Aurivillius phas Bi6Fe2Ti3-2xNbxCoxO18 (0≤x≤0.4)Appl Phys Lett, 104 (2014)062413
[20] R.X. Ti, X.M. Lu, J. He, F.Z. Huang, H.R. Wu, F. Mei, M. Zhou, Y. Li, T.T. Xu, J.S. ZhuMultiferroic properties and magnetoelectric coupling in Fe/Co co-doped Bi3.25La0.75Ti3O12J Mater Chem C, 3 (2015), pp. 11868-11873
[21] Y. Schuhl, H. Baussart, R. Delobel, M.L. Bras, J.M. Leroy, L.G. Gengembre, J. GrimblotStudy of mixed-oxide catalysts containing bismuth, vanadium and antimony. Preparation, phase composition, spectroscopic characterization and catalytic oxidation of propeneJ Chem Soc Faraday Trans I, 79 (1983), pp. 2055-2069
[22] A.P. Dementjev, O.P. Ivanova, L.A. Vasilyev, A.V. Naumkin, D.M. Nemirovsky, D.Y. ShalaevAltered layer as sensitive initial chemical state indicatorJ Vac Sci Technol, A, 12 (1994), pp. 423-427
[23] F.Z. Huang, X.M. Lu, Z. Wang, W.W. Lin, Y. Kan, H.F. Bo, W. Cai, J.S. ZhuImpact of annealing atmosphere on the multiferroic and dielectric properties of BiFeO3/Bi3.25La0.75Ti3O12 thin filmsAppl Phys A, 97 (2009), pp. 699-704
[24] A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyreInvestigation of multiplet splitting of Fe XPS spectra and bonding in iron compoundsSurf Interface Anal, 36 (2004), p. 1564
[25] K.S. KimX-ray-photoelectron spectroscopic studies of the electronic structure of CoOPhys Rev B, 11 (1975), pp. 2177-2185
[26] J.L. WangPreparation of Sr, Co doped bismuth layer structured oxides and its multiferroic properties. PhD DissertationsUniversity of Science & Technology of China (2005), p. 84
[27] X.Y. Mao, H. Sun, W. Wang, Y.L. Lu, X.B. ChenEffects of Co-substitutes on multiferroic properties of Bi5FeTi3O15 ceramicsSolid State Commun, 152 (2012), pp. 483-487
[28] S. Kojima, R. Imaizumi, S. Hamazaki, M. TakashigeRaman study of ferroelectric bismuth layer-oxides ABi4Ti4O15J Mol Struct, 348 (1995), pp. 37-40
[29] J.F. Scott, M. DawberOxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectricsAppl Phys Lett, 76 (2000), p. 3801
[30] D.P. Song, J. Yang, B. Yuan, X.Z. Zuo, X.W. Tang, L. Chen, W.H. Song, X.B. Zhu, Y.P. SunImproved ferroelectric polarization of V-doped Bi6Fe2Ti3O18 thin films prepared by a chemical solution depositionJ Appl Phys, 117 (2015), p. 244105
[31] T. Kimura, S. Ishihara, H. Shintani, T. Arima, K.T. Takahashi, K. Ishizaka, Y. TokuraDistorted perovskite with e1gconfiguration as a frustrated spin systemPhys Rev B, 68 (2003)060403(R)
[32] J.T. Zhang, X.M. Lu, X.Q. Yang, J.L. Wang, J.S. ZhuOrigins of ↑↑↓↓magnetic structure and ferroelectricity in multiferroic Lu2CoMnO6Phys Rev B, 93 (2016)075140
[33] J. Yang, L.H. Yin, Z. Liu, X.B. Zhu, W.H. Song, J.M. Dai, Z.R. Yang, Y.P. SunMagnetic and dielectric properties of Aurivillius phase Bi6Fe2Ti3O18 and the doped compoundsAppl Phys Lett, 101 (2012)012402
[34] Y. Yun, C. Ma, X.F. Zhai, H.L. Huang, D.C. Meng, J.L. Wang, Z.P. Fu, R.R. Peng, G.J. Brown, Y.L. LuInterface engineering in epitaxial growth of layered oxides via a conducting layer insertionAppl Phys Lett, 107 (2015)011602
[35] X.Z. Zuo, J. Yang, D.P. Song, B. Yuan, X.W. Tang, K.J. Zhang, X.B. Zhu, W.H. Song, J.M. Dai, Y.P. SunMagnetic, dielectric, and magneto-dielectric properties of rare-earth-substituted Aurivillius phase Bi6Fe1.4Co0.6Ti3O18J Appl Phys, 116 (2014), p. 154102
[36] M. Hücker, V. Kataev, J. Pommer, U. Ammerahl, A. Revcolevschi, J.M. Tranquada, B.D. BüchnerDzyaloshinsky-Moriya spin canting in the low-temperature tetragonal phase of La2-x-yEuySrxCuO4Phys Rev B, 70 (2004), p. 214515
[37] J.B. GoodenoughAn interpretation of the magnetic properties of the perovskite-type mixed crystals La1-xSrxCoO3-?J Phys Chem Solid, 6 (1958), pp. 287-297
[38] J. KanamoriSuperexchange interaction and symmetry properties of electron orbitalsJ Phys Chem Solid, 10 (1959), pp. 87-98
[39] I. DzyaloshinskyA thermodynamic theory of “weak” ferromagnetism of antiferromagneticsJ Phys Chem Solid, 4 (1958), pp. 241-255
[40] T. MoriyaAnisotropic superexchange interaction and weak ferromagnetismPhys Rev, 120 (1960), pp. 91-98
[41] X.Q. Chen, F.J. Yang, W.Q. Cao, D.Y. Wang, K. ChenRoom-temperature magnetoelectric coupling in Bi4(Ti1Fe2)O12-δ systemJ Phys D Appl Phys, 43 (2010)065001
[42] J. Paul, S. Bhardwaj, K.K. Sharma, R.K. Kotnalac, R. KumarRoom temperature multiferroic behaviour and magnetoelectric coupling in Sm/Fe modified Bi4Ti3O12 ceramics synthesized by solid state reaction methodJ Alloy Comp, 634 (2015), pp. 58-64
[43] J.B. Li, Y.P. Huang, G.H. Rao, G.Y. Liu, J. Luo, J.R. Chen, J.K. LiangFerroelectric transition of Aurivillius compounds Bi5Ti3FeO15 and Bi6Ti3Fe2O18Appl Phys Lett, 96 (2010), p. 222903
[44] H. Sun, X.B. ChenStructure and ferroelectric properties of stoichiometric and Sr-deficient-SrBi4Ti4O15 thin filmsJ Mater Sci, 46 (2011), pp. 1581-1584
[45] M. Osada, M. Tada, M. Kakihana, T. Watanabe, H. FunakuboCation distribution and structural instability in Bi4-xLaxTi3O12Jpn J Appl Phys, 40 (2001), pp. 5572-5575
[46] Y. Lia, C.J. Lu, J. Su, Y.C. Zhang, C. Zhang, S.F. Zhao, X.X. Wang, D.J. Zhang, H.M. YinRoom-temperature multiferroic Bi4YFeTi3O15 thin films of four-layered perovskiteJ Alloy Comp, 687 (2016), pp. 707-711
[47] B. Yuan, J. Yang, X.Z. Zuo, D.P. Song, X.W. Tang, X.B. Zhu, J.M. Dai, W.H. Song, Y.P. SunFerrimagnetic and spin-glass transition in the Aurivillius compound SrBi5Ti4Cr0.5Co0.5O18J Appl Phys, 117 (2015), p. 233906
[48] X.Y. Mao, H. Sun, W. Wang, X.B. Chen, Y.L. LuFerromagnetic, ferroelectric properties, and magneto-dielectric effect of Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramicsAppl Phys Lett, 102 (2013)072904
[49] J.F. Scott, M. DawberOxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectricsAppl Phys Lett, 76 (2000), p. 3801
[50] J. Tauc, R. Grigorovici, A. VancuOptical properties and electronic structure of amorphous germaniumPhys Status Solidi B, 15 (1966), pp. 627-637
[51] S.M. Sun, W.Z. Wang, H.L. Xu, L. Zhou, M. Zhou, M. Shang, L. ZhangBi5FeTi3O15 hierarchical microflowers: hydrothermal synthesis, growth mechanism, and associated visible-light-driven photocatalysisJ Phys Chem C, 112 (2008), pp. 17835-17843
[52] G. Naresh, T.K. MandalExcellent sun-light-driven photocatalytic activity by Aurivillius layered perovskites Bi5-xLaxTi3FeO15(x=1, 2)ACS Appl Mater Interfaces, 6 (2014), pp. 21000-21010
[53] H. Weng, J. Dong, T. Fukumura, M. Kawasaki, Y. KawazoeFirst principles investigation of the magnetic circular dichroism spectra of Co-doped anatase and rutile TiO2Phys Rev B, 73 (2006), p. 121201(R)
[54] M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. CoeyAnisotropic ferromagnetism in substituted Zinc oxidePhys Rev Lett, 93 (2004), p. 177206

Memo

Memo:


Last Update: 2018-11-22