|Table of Contents|
[1].Enhanced thermoelectric performance of two dimensional MS2 (M = Mo, W) through phase engineering[J].Journal of Materiomics,2018,(04):329-337.[doi:https://doi.org/10.1016/j.jmat.2018.08.001]
 Bin Ouyanga,Shunda Chenb,Yuhang Jingc,et al.Enhanced thermoelectric performance of two dimensional MS2 (M = Mo, W) through phase engineering[J].Journal of Materiomics,2018,(04):329-337.[doi:https://doi.org/10.1016/j.jmat.2018.08.001]
Copy

Enhanced thermoelectric performance of two dimensional MS2 (M = Mo, W) through phase engineering(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2018年04期
Page:
329-337
Research Field:
Publishing date:
2018-11-22

Info

Title:
Enhanced thermoelectric performance of two dimensional MS2 (M = Mo, W) through phase engineering
Highlights:
Bin OuyangaShunda ChenbYuhang JingcdTianran WeieShiyun XiongfgDavide Donadiob
a National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; b Department of Chemistry, University of California Davis, One Shields Ave. Davis, California, 95616, United States; c Department of Astronautical Science and Mechanics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China; d Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; e State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China;....
Keywords:
Phase engineeringThermoelectricTransition metal dichalcogenides
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.08.001
Abstract:
The potential application of monolayer MS2 (M?=?Mo, W) as thermoelectric material has been widely studied since the first report of successful fabrication. However, their performances are hindered by the considerable band gap and the large lattice thermal conductivity in the pristine 2H phase. Recent discoveries of polymorphism in MS2s provide new opportunities for materials engineering. In this work, phonon and electron transport properties of both 2H and 1T′ phases were investigated by first-principle calculations. It is found that upon the phase transition from 2H to 1T′ in MS2, the electron transport is greatly enhanced, while the lattice thermal conductivity is reduced by several times. These features lead to a significant enhancement of power factor by one order of magnitude in MoS2 and by three times in WS2. Meanwhile, the figure of merit can reach up to 0.33 for 1T′MoS2 and 0.68 for 1T′WS2 at low temperature. These findings indicate that monolayer MS2 in the 1T′ phase can be promising materials for thermoelectric devices application. Meanwhile, this work demonstrates that phase engineering techniques can bring in one important control parameter in materials design.

References:

[1] M. Bernardi, M. Palummo, J.C. GrossmanExtraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materialsNano Lett, 13 (8) (2013), pp. 3664-3670
[2] M. Buscema, M. Barkelid, V. Zwiller, H.S.J. van der Zant, G.A. Steele, A. Castellanos-GomezLarge and tunable photothermoelectric effect in single-layer MoS2Nano Lett, 13 (2) (2013), pp. 358-363
[3] J. Feng, X. Qian, C.-W. Huang, J. LiStrain-engineered artificial atom as a broad-spectrum solar energy funnelNat Photon, 6 (12) (2012), pp. 866-872
[4] S. Huang, X. Ling, L. Liang, J. Kong, H. Terrones, V. Meunier, M.S. DresselhausProbing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopyNano Lett, 14 (10) (2014), pp. 5500-5508
[5] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. WangEmerging photoluminescence in monolayer MoS2Nano Lett, 10 (4) (2010), pp. 1271-1275
[6] B. Ouyang, Z. Mi, J. SongBandgap transition of 2H transition metal dichalcogenides: predictive tuning via inherent interface coupling and strainJ Phys Chem C, 120 (16) (2016), pp. 8927-8935
[7] K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, J. ShanTightly bound trions in monolayer MoS2Nat Mater, 12 (3) (2013), pp. 207-211
[8] K. He, N. Kumar, L. Zhao, Z. Wang, K.F. Mak, H. Zhao, J. ShanTightly bound excitons in monolayer WSe2Phys Rev Lett, 113 (2) (2014)026803
[9] D. MacNeill, C. Heikes, K.F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, D.C. RalphBreaking of valley degeneracy by magnetic field in monolayer MoSe2Phys Rev Lett, 114 (3) (2015)037401
[10] D. Xiao, G.-B. Liu, W. Feng, X. Xu, W. YaoCoupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenidesPhys Rev Lett, 108 (19) (2012)196802
[11] T. Wu, H. ZhangPiezoelektrizit?t in zweidimensionalen materialienAngew Chem, 127 (15) (2015), pp. 4508-4510
[12] E.J. ReedPiezoelectricity: now in two dimensionsNat Nanotechnol, 10 (2) (2015), pp. 106-107
[13] W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, J. Hone, Z.L. WangPiezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronicsNature, 514 (7523) (2014), pp. 470-474
[14] Z. Jin, Q. Liao, H. Fang, Z. Liu, W. Liu, Z. Ding, T. Luo, N. YangA revisit to high thermoelectric performance of single-layer MoS2Sci Rep, 5 (2015), p. 18342
[15] W. Huang, X. Luo, C.K. Gan, S.Y. Quek, G. LiangTheoretical study of thermoelectric properties of few-layer MoS2 and WSe2Phys Chem Chem Phys, 16 (22) (2014), pp. 10866-10874
[16] A. Arab, Q. LiAnisotropic thermoelectric behavior in armchair and zigzag mono- and fewlayer MoS2 in thermoelectric generator applicationsSci Rep, 5 (2015), p. 13706View Record in Scopus
[17] C. SevikAssessment on lattice thermal properties of two-dimensional honeycomb structures: graphene, h-BN, h-MoS2, and h-MoSe2Phys Rev B, 89 (3) (2014)035422
[18] M. Tahir, U. Schwingenschl?glTunable thermoelectricity in monolayers of MoS2 and other group-VI dichalcogenidesN J Phys, 16 (11) (2014)115003
[19] A.N. Gandi, U. Schwingenschl?glWS2 as an excellent high-temperature thermoelectric materialChem Mater, 26 (22) (2014), pp. 6628-6637
[20] R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A.R. Hight Walker, H.G. XingThermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopyACS Nano, 8 (1) (2014), pp. 986-993
[21] X. Gu, B. Li, R. YangLayer thickness-dependent phonon properties and thermal conductivity of MoS2J Appl Phys, 119 (8) (2016)085106
[22] N. Peimyoo, J. Shang, W. Yang, Y. Wang, C. Cong, T. YuThermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopyNano Res, 8 (4) (2015), pp. 1210-1221
[23] L. Yang, Z.-G. Chen, M. Hong, G. Han, J. ZouEnhanced thermoelectric performance of nanostructured Bi2Te3 through significant phonon scatteringACS Appl Mater Interfaces, 7 (42) (2015), pp. 23694-23699
[24] D.A. WrightThermoelectric properties of bismuth telluride and its alloysNature, 181 (4612) (1958)834-834
[25] L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. KanatzidisUltralow thermal conductivity and high thermoelectric figure of merit in SnSe crystalsNature, 508 (7496) (2014), pp. 373-377
[26] L.-D. Zhao, C. Chang, G. Tan, M.G. KanatzidisSnSe: a remarkable new thermoelectric materialEnergy Environ Sci, 9 (10) (2016), pp. 3044-3060
[27] J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. SnyderEnhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of statesScience, 321 (5888) (2008), pp. 554-557
[28] Y. Pei, H. Wang, G.J. SnyderBand engineering of thermoelectric materialsAdv Mater, 24 (46) (2012), pp. 6125-6135
[29] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. HeinzAtomically thin MoS2: a new direct-gap semiconductorPhys Rev Lett, 105 (13) (2010)136805
[30] G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, M. ChhowallaCoherent atomic and electronic heterostructures of single-layer MoS2ACS Nano, 6 (8) (2012), pp. 7311-7317
[31] B. Ouyang, G. Lan, Y. Guo, Z. Mi, J. SongPhase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformationAppl Phys Lett, 107 (19) (2015)191903
[32] Y. Guo, D. Sun, B. Ouyang, A. Raja, J. Song, T.F. Heinz, L.E. BrusProbing the dynamics of the metallic-to-semiconducting structural phase transformation in MoS2 crystalsNano Lett, 15 (8) (2015), pp. 5081-5088
[33] Y.-C. Lin, D.O. Dumcenco, Y.-S. Huang, K. SuenagaAtomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2Nat Nanotechnol, 9 (5) (2014), pp. 391-396
[34] B. Ouyang, S. Xiong, Z. Yang, Y. Jing, Y. WangMoS2 heterostructure with tunable phase stability: strain induced interlayer covalent bond formationNanoscale, 9 (24) (2017), pp. 8126-8132
[35] L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Z. Sun, S. WeiVacancy-Induced ferromagnetism of MoS2 nanosheetsJ Am Chem Soc, 137 (7) (2015), pp. 2622-2627
[36] Y. Zhou, E.J. ReedStructural phase stability control of monolayer MoTe2 with adsorbed atoms and moleculesJ Phys Chem C, 119 (37) (2015), pp. 21674-21680
[37] B. Ouyang, P. Ou, Y. Wang, Z. Mi, J. SongPhase engineering of MoS2 through GaN/AlN substrate coupling and electron dopingPhys Chem Chem Phys, 18 (48) (2016), pp. 33351-33356
[38] B. Ouyang, S. Xiong, Y. JingTunable phase stability and contact resistance of monolayer transition metal dichalcogenides contacts with metal, npj 2DMater Appl, 2 (1) (2018), p. 13View Record in Scopus
[39] A.N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan, G. SeifertNew route for stabilization of 1t-WS2 and MoS2 phasesJ Phys Chem C, 115 (50) (2011), pp. 24586-24591
[40] R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. ChhowallaPhase-engineered low-resistance contacts for ultrathin MoS2 transistorsNat Mater, 13 (12) (2014), pp. 1128-1134
[41] K.-A.N. Duerloo, Y. Li, E.J. ReedStructural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayersNat Commun, 5 (2014)
[42] B. Ouyang, P. Ou, J. SongControllable phase stabilities in transition metal dichalcogenides through curvature engineering: first-principles calculations and continuum predictionAdv Theor Simul, 1 (6) (2018)1800003
[43] H. Du, H.-L. Guo, Y.-N. Liu, X. Xie, K. Liang, X. Zhou, X. Wang, A.-W. XuMetallic 1t-LixMoS2 cocatalyst significantly enhanced the photocatalytic H2 evolution over Cd0.5Zn0.5S nanocrystals under visible light irradiationACS Appl Mater Interfaces, 8 (6) (2016), pp. 4023-4030
[44] M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. JinEnhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheetsJ Am Chem Soc, 135 (28) (2013), pp. 10274-10277
[45] X. Qian, J. Liu, L. Fu, J. LiQuantum spin Hall effect in two-dimensional transition metal dichalcogenidesScience, 346 (6215) (2014), pp. 1344-1347
[46] P. Hohenberg, W. KohnInhomogeneous electron gasPhys Rev, 136 (3B) (1964), pp. B864-B871
[47] W. Kohn, L.J. ShamSelf-consistent equations including exchange and correlation effectsPhys Rev, 140 (4A) (1965), pp. A1133-A1138
[48] P.E. Bl?chlProjector augmented-wave methodPhys Rev B, 50 (24) (1994), pp. 17953-17979
[49] G. Kresse, J. FurthmüllerEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys Rev B, 54 (16) (1996), pp. 11169-11186
[50] J.P. Perdew, K. Burke, M. ErnzerhofGeneralized gradient approximation made simplePhys Rev Lett, 77 (18) (1996), pp. 3865-3868
[51] N. Lu, H. Guo, L. Li, J. Dai, L. Wang, W.-N. Mei, X. Wu, X.C. ZengMoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical fieldNanoscale, 6 (5) (2014), pp. 2879-2886
[52] S. Baroni, S. de Gironcoli, A. Dal Corso, P. GiannozziPhonons and related crystal properties from density-functional perturbation theoryRev Mod Phys, 73 (2) (2001), pp. 515-562
[53] G. Paolo, B. Stefano, B. Nicola, C. Matteo, C. Roberto, C. Carlo, C. Davide, L.C. Guido, C. Matteo, D. Ismaila, C. Andrea Dal, G. Stefano de, F. Stefano, F. Guido, G. Ralph, G. Uwe, G. Christos, K. Anton, L. Michele, M.-S. Layla, M. Nicola, M. Francesco, M. Riccardo, P. Stefano, P. Alfredo, P. Lorenzo, S. Carlo, S. Sandro, S. Gabriele, P.S. Ari, S. Alexander, U. Paolo, M.W. RenataQUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materialsJ Phys Condens Matter, 21 (39) (2009)395502
[54] W. Li, J. Carrete, N.A. Katcho, N. Mingo, ShengBTEA solver of the Boltzmann transport equation for phononsComput Phys Commun, 185 (6) (2014), pp. 1747-1758ArticleDownload PDFView Record in Scopus
[55] W. Li, N. Mingo, L. Lindsay, D.A. Broido, D.A. Stewart, N.A. KatchoThermal conductivity of diamond nanowires from first principlesPhys Rev B, 85 (19) (2012)195436
[56] W. Li, L. Lindsay, D.A. Broido, D.A. Stewart, N. MingoThermal conductivity of bulk and nanowire Mg2SixSn1-x alloys from first principlesPhys Rev B, 86 (17) (2012)174307
[57] G.K.H. Madsen, D.J. SinghBoltzTraP. A code for calculating band-structure dependent quantitiesComput Phys Commun, 175 (1) (2006), pp. 67-71ArticleDownload PDFView Record in Scopus
[58] Y. Cai, G. Zhang, Y.-W. ZhangPolarity-reversed robust Carrier mobility in monolayer MoS2 nanoribbonsJ Am Chem Soc, 136 (17) (2014), pp. 6269-6275
[59] J. Bardeen, W. ShockleyDeformation potentials and mobilities in non-polar crystalsPhys Rev, 80 (1) (1950), pp. 72-80
[60] P. Jiang, X. Qian, X. Gu, R. YangProbing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se) using time-domain thermoreflectanceAdv Mater, 29 (36) (2017)1701068
[61] D.O. Lindroth, P. ErhartThermal transport in van der Waals solids from first-principles calculationsPhys Rev B, 94 (11) (2016)115205
[62] G. Zhu, J. Liu, Q. Zheng, R. Zhang, D. Li, D. Banerjee, D.G. CahillTuning thermal conductivity in molybdenum disulfide by electrochemical intercalationNat Commun, 7 (2016), p. 13211
[63] X. Zhang, D. Sun, Y. Li, G.-H. Lee, X. Cui, D. Chenet, Y. You, T.F. Heinz, J.C. HoneMeasurement of lateral and interfacial thermal conductivity of single- and bilayer MoS2 and MoSe2 using refined optothermal Raman techniqueACS Appl Mater Interfaces, 7 (46) (2015), pp. 25923-25929
[64] X. Gu, R. YangPhonon transport in single-layer transition metal dichalcogenides: a first-principles studyAppl Phys Lett, 105 (13) (2014)131903
[65] J.-W. Jiang, H. Park, T. RabczukMolecular dynamics simulations of single-layer molybdenum disulphide (MoS2): stillinger-Weber parametrization, mechanical properties, and thermal conductivityJ Appl Phys, 114 (6) (2013)064307
[66] S.J.R. Tan, I. Abdelwahab, Z. Ding, X. Zhao, T. Yang, G.Z.J. Loke, H. Lin, I. Verzhbitskiy, S.M. Poh, H. Xu, C.T. Nai, W. Zhou, G. Eda, B. Jia, K.P. LohChemical stabilization of 1T′ phase transition metal dichalcogenides with giant optical kerr nonlinearityJ Am Chem Soc, 139 (6) (2017), pp. 2504-2511
[67] D. Kang, Y. Zhou, W. Yi, C. Yang, J. Guo, Y. Shi, S. Zhang, Z. Wang, C. Zhang, S. Jiang, A. Li, K. Yang, Q. Wu, G. Zhang, L. Sun, Z. ZhaoSuperconductivity emerging from a suppressed large magnetoresistant state in tungsten ditellurideNat Commun, 6 (2015), p. 7804
[68] X.-C. Pan, X. Chen, H. Liu, Y. Feng, Z. Wei, Y. Zhou, Z. Chi, L. Pi, F. Yen, F. Song, X. Wan, Z. Yang, B. Wang, G. Wang, Y. ZhangPressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditellurideNat Commun, 6 (2015), p. 7805
[69] D.K. Efetov, P. KimControlling electron-phonon interactions in graphene at ultrahigh Carrier densitiesPhys Rev Lett, 105 (25) (2010)256805
[70] H. Babaei, J.M. Khodadadi, S. SinhaLarge theoretical thermoelectric power factor of suspended single-layer MoS2Appl Phys Lett, 105 (19) (2014)193901
[71] B. Zhu, X. Chen, X. CuiExciton binding energy of monolayer WS2Sci Rep, 5 (2015), p. 9218
[72] E.K. Lee, L. Yin, Y. Lee, J.W. Lee, S.J. Lee, J. Lee, S.N. Cha, D. Whang, G.S. Hwang, K. Hippalgaonkar, A. Majumdar, C. Yu, B.L. Choi, J.M. Kim, K. KimLarge thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport propertiesNano Lett, 12 (6) (2012), pp. 2918-2923
[73] L.-D. Zhao, V.P. Dravid, M.G. KanatzidisThe panoscopic approach to high performance thermoelectricsEnergy Environ Sci, 7 (1) (2014), pp. 251-268
[74] C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang, H. Sasaki, M. Kondo, K. Koga, K. Yabuki, G.J. Snyder, R. Yang, K. KoumotoFlexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2Nat Mater, 14 (6) (2015), pp. 622-627

Memo

Memo:


Last Update: 2018-11-22