|Table of Contents|
[1].Microstructure engineering beyond SnSe1-xSx solid solution for high thermoelectric performance[J].Journal of Materiomics,2018,(04):321-328.[doi:https://doi.org/10.1016/j.jmat.2018.09.001]
 Miaomiao Lia,b,Hezhu Shaob,et al.Microstructure engineering beyond SnSe1-xSx solid solution for high thermoelectric performance[J].Journal of Materiomics,2018,(04):321-328.[doi:https://doi.org/10.1016/j.jmat.2018.09.001]
Copy

Microstructure engineering beyond SnSe1-xSx solid solution for high thermoelectric performance(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2018年04期
Page:
321-328
Research Field:
Publishing date:
2018-11-22

Info

Title:
Microstructure engineering beyond SnSe1-xSx solid solution for high thermoelectric performance
Highlights:
Miaomiao LiabHezhu ShaobJingtao XubQingsong WucXiaojian TanbGuoqiang LiubMin JinbHaoyang HubHuajie HuangaJianfeng ZhangaJun Jiang
aCollege of Mechanics and Materials, Hohai University, Nanjing 210098, China; bNingbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Science (CAS), Ningbo 315201, China; cLaboratory of Advanced Materials, Fudan University, Shanghai 200438, China
Keywords:
SnSeSolid solutionGrain refinementThermal conductivityThermoelectric performance
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.09.001
Abstract:
Recently, SnSe has attracted wide attention as a promising environment-friendly IV-VI thermoelectric material. Here, SnS is alloyed with Na-doped SnSe to decrease the thermal conductivity for better thermoelectric performance. Consistent with previous reports, the lattice constant and the band gap change linearly with increasing SnS, suggesting the formation of SnSe1-xSx solid solution. However, SnS nano-precipitations have been clearly observed, indicating the phase separation in the alloys. Moreover, the grain size decreases obviously with increasing SnS amount. The first-principles calculations show that the nano-precipitation is due to the positive formation energies for SnSe1-xSx in the small x region. Due to the structure engineering, the lattice thermal conductivity is greatly reduced in SnSe1-xSx samples, leading to a promising ZT of 1.35 for Na0.03Sn0.97Se0.7S0.3 at 816?K.

References:

[1] D.M. RoweHandbook of thermoelectricsCRC Press, Boca Raton (1995)
[2] W.G. Zeier, A. Zevalkink, Z.M. Gibbs, G. Hautier, M.G. Kanatzidis, G.J. SnyderThinking like a chemist: intuition in thermoelectric materialsAngew Chem Int Ed, 55 (2016), pp. 6826-6841
[3] G. Tan, L.D. Zhao, M.G. KanatzidisRationally designing high-performance bulk thermoelectric materialsChem Rev, 116 (2016), p. 12123
[4] T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. ZhaoCompromise and synergy in high-efficiency thermoelectric materialsAdv Mater, 29 (2017), p. 1605884
[5] L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. KanatzidisUltralow thermal conductivity and high thermoelectric figure of merit in SnSe crystalsNature, 508 (2014), pp. 373-377
[6] P.C. Wei, S. Bhattacharya, J. He, S. Neeleshwar, R. Podila, Y.Y. Chen, A.M. RaoThe intrinsic thermal conductivity of SnSeNature, 539 (2016), p. E1
[7] S. Wang, S. Hui, K.L. Peng, T.P. Bailey, W. Liu, Y.G. Yan, X.Y. Zhou, X.F. Tang, C. UherLow temperature thermoelectric properties of p-type doped single-crystalline SnSeAppl Phys Lett, 112 (2018), p. 142102
[8] D. Ibrahim, J.-B. Vaney, S. Sassi, C. Candolfi, V. Ohorodniichuk, P. Levinsky, C. Semprimoschnig, A. Dauscher, B. LenoirReinvestigation of the thermal properties of single-crystalline SnSeAppl Phys Lett, 110 (2017)032103
[9] M. Jin, Z.W. Chen, X.J. Tan, H.Z. Shao, G.Q. Liu, H.Y. Hu, J.T. Xu, B. Yu, H. Shen, J.Y. Xu, H.C. Jiang, Y.Z. Pei, J. JiangCharge transport in thermoelectric SnSe single crystalsACS Energy Letters, 3 (2018), pp. 689-694
[10] L.D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. DravidUltrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSeScience, 351 (2016), pp. 141-144
[11] K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang, X. ZhouBroad temperature plateau for high ZTs in heavily doped p-type SnSe single crystalsEnergy Environ Sci, 9 (2016), pp. 454-460
[12] K. Peng, B. Zhang, H. Wu, X. Cao, A. Li, D. Yang, X. Lu, G. Wang, X. Han, C. UherUltra-high average figure of merit in synergistic band engineered SnxNa1?xSe0.9S0.1 single crystalsMater Today, 11 (2017), p. 5
[13] S. Sassi, C. Candolfi, J.B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher, B. LenoirAssessment of the thermoelectric performance of polycrystalline p-type SnSeAppl Phys Lett, 104 (2014), p. 105View Record in Scopus
[14] C.L. Chen, H. Wang, Y.Y. Chen, T. Day, G.J. SnyderThermoelectric properties of p-type polycrystalline SnSe doped with AgJ Mater Chem, 2 (2014), pp. 11171-11176
[15] Q. Zhang, E.K. Chere, J. Sun, F. Cao, K. Dahal, S. Chen, G. Chen, Z. RenStudies on thermoelectric properties of n-type polycrystalline SnSe1-xSx by Iodine dopingAdv Energy Mater, 5 (2015), p. 1500360
[16] Y. Li, X. Shi, D. Ren, J. Chen, L. ChenInvestigation of the anisotropic thermoelectric properties of oriented polycrystalline SnSeEnergies, 8 (2015), pp. 6275-6285
[17] X. Wang, J. Xu, G. Liu, Y. Fu, Z. Liu, X. Tan, H. Shao, H. Jiang, T. Tan, J. JiangOptimization of thermoelectric properties in n-type SnSe doped with BiCl3Appl Phys Lett, 108 (2016), p. 105ArticleDownload PDF
[18] Y. Fu, J. Xu, G. Liu, J. Yang, X. Tan, Z. Liu, H. Qin, H. Shao, H. Jiang, B. LiangEnhanced thermoelectric performance in p-type polycrystalline SnSe benefiting from texture modulationJ Mater Chem C, 4 (2016), pp. 1201-1207
[19] E.K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z. RenStudies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSeJ Mater Chem, 4 (2016), pp. 1848-1854
[20] T.R. Wei, G. Tan, X. Zhang, C.F. Wu, J.F. Li, V.P. Dravid, G.J. Snyder, M.G. KanatzidisDistinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSeJ Am Chem Soc, 138 (2016), pp. 8875-8882
[21] L. Zheng, W. Li, S. Lin, J. Li, Z. Chen, Y. PeiInterstitial defects improving thermoelectric SnTe in addition to band convergenceACS Energy Lett, 2 (2017), pp. 563-568
[22] H. Leng, M. Zhou, J. Zhao, Y. Han, L. LiOptimization of thermoelectric performance of anisotropic AgxSn1?xSe compoundsJ Electron Mater, 45 (2016), pp. 527-534
[23] M. Hong, Z.G. Chen, L. Yang, T.C. Chasapis, S.D. Kang, Y.C. Zou, G.J. Auchterlonie, M. Kanatzidis, G.J. Snyder, J. ZouEnhancing thermoelectric performance of SnSe1-xTex nanoplates through band engineeringJ Mater Chem, 5 (2017), pp. 10713-10721
[24] Y.X. Chen, Z.H. Ge, M. Yin, D. Feng, X.Q. Huang, W. Zhao, J. HeUnderstanding of the extremely low thermal conductivity in high-performance polycrystalline SnSe through potassium dopingAdv Funct Mater, 26 (2016), pp. 6836-6845
[25] Z.H. Ge, D. Song, X. Chong, F. Zheng, L. Jin, X. Qian, L. Zheng, R.E. Dunin-Borkowski, P. Qin, J. FengBoosting the thermoelectric performance of (Na, K) co-doped polycrystalline SnSe by synergistic tailoring of the band structure and atomic-scale defect phonon scatteringJ Am Chem Soc, 139 (2017), pp. 9714-9720
[26] M. Jin, H. Shao, H. Hu, D. Li, H. Shen, J. Xu, J. JiangGrowth and characterization of large size undoped p-type SnSe single crystal by horizontal bridgman methodJ Alloy Comp, 712 (2017), pp. 857-862
[27] D. Li, X. Tan, J. Xu, G. Liu, M. Jin, H. Shao, H.J. Huang, J. Zhang, J. JiangEnhanced thermoelectric performance in n-type polycrystalline SnSe by PbBr2 dopingRSC Adv, 7 (2017), pp. 17906-17912
[28] L. Zhang, J. Wang, Q. Sun, P. Qin, Z. Cheng, Z. Ge, Z. Li, S. DouThree-stage inter-orthorhombic evolution and high thermoelectric performance in Ag-doped nanolaminar SnSe polycrystalsAdv Energy Mater, 7 (2017), p. 1700573
[29] Y.K. Lee, K. Ahn, J. Cha, C. Zhou, H.S. Kim, G. Choi, S.I. Chae, J.H. Park, Y. Lee, C.H. ParkEnhancing p-type thermoelectric performances of polycrystalline SnSe via tuning phase transition temperatureJ Am Chem Soc, 139 (2017), pp. 10887-10896
[30] X. Wang, J. Xu, G.Q. Liu, X. Tan, D. Li, H. Shao, T. Tan, J. JiangTexturing degree boosts thermoelectric performance of silver-doped polycrystalline SnSeNPG Asia Mater, 9 (2017), p. e426
[31] J. Fu, X. Su, H. Xie, Y. Yan, W. Liu, Y. You, X. Cheng, C. Uher, X. TangUnderstanding the combustion process for the synthesis of mechanically robust SnSe thermoelectricsNanomater Energy, 44 (2018), pp. 53-62
[32] Y. Li, F. Li, J. Dong, Z.H. Ge, F. Kang, J. He, H. Du, B. Li, J.F. LiEnhanced mid-temperature thermoelectric performance in textured SnSe polycrystals made of solvothermally synthesized powdersJ Mater Chem C, 4 (2016), pp. 2047-2055
[33] S. Yang, J. Si, Q. Su, H. WuEnhanced thermoelectric performance of SnSe doped with layered MoS2/grapheneMater Lett, 193 (2017), pp. 146-149
[34] T.R. Wei, G. Tan, C.F. Wu, C. Chang, L.D. Zhao, J.F. Li, G.J. Snyder, M.G. KanatzidisThermoelectric transport properties of polycrystalline SnSe alloyed with PbSeAppl Phys Lett, 110 (2017)053901
[35] Y. Fu, J. Xu, G.Q. Liu, X. Tan, Z. Liu, X. Wang, H. Shao, H. Jiang, B. Liang, J. JiangStudy on thermoelectric properties of polycrystalline SnSe by Ge dopingJ Electron Mater, 46 (2017), pp. 3182-3186
[36] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. VashaeeHigh-thermoelectric performance of nanostructured Bismuth antimony Telluride bulk alloysScience, 320 (2008), pp. 634-638
[37] L. Hu, T. Zhu, X. Liu, X. ZhaoPoint defect engineering of high-performance Bismuth-Telluride-based thermoelectric materialsAdv Funct Mater, 24 (2015), pp. 5211-5218
[38] Y. Xiao, G. Chen, H. Qin, M. Wu, Z. Xiao, J. Jiang, J. Xu, H. Jiang, G. XuEnhanced thermoelectric figure of merit in p-type Bi0.48Sb1.52Te3 alloy with WSe2 additionJ Mater Chem, 2 (2014), pp. 8512-8516
[39] X. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, Z.F. RenExperimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3Nano Lett, 10 (2010), pp. 3373-3378
[40] W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, C. UherConvergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutionsPhys Rev Lett, 108 (2012), p. 166601
[41] X.J. Tan, G.Q. Liu, H.Z. Shao, J.T. Xu, B. Yu, H.C. Jiang, J. JiangAcoustic phonon softening and reduced thermal conductivity in Mg2Si1-xSnx solid solutionsAppl Phys Lett, 110 (2017), p. 143903
[42] Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen, G.J. SnyderConvergence of electronic bands for high performance bulk thermoelectricsNature, 473 (2011), pp. 66-69
[43] G. Tan, F. Shi, S. Hao, L.D. Zhao, C. Hang, X. Zhang, C. Uher, C. Wolverton, V.P. Dravid, M.G. KanatzidisNon-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTeNat Commun, 7 (2016), p. 12167
[44] K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. KanatzidisHigh-performance bulk thermoelectrics with all-scale hierarchical architecturesNature, 489 (2012), pp. 414-418
[45] L. Wen, L. Zheng, B. Ge, S. Lin, X. Zhang, Z. Chen, Y. Chang, Y. PeiPromoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defectsAdv Mater, 29 (2017), p. 1605887
[46] Y.M. Han, J. Zhao, M. Zhou, X.X. Jiang, H.Q. Leng, L.F. LiThermoelectric performance of SnS and SnS-SnSe solid solutionJ Mater Chem, 3 (2015), pp. 4555-4559
[47] Asfandiyar, T.R. Wei, Z. Li, F.H. Sun, Y. Pan, C.F. Wu, M.U. Farooq, H. Tang, F. Li, B. LiThermoelectric sns and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: anisotropic thermoelectric propertiesSci Rep, 7 (2017), p. 43262View Record in Scopus
[48] Q. Tan, L.D. Zhao, J.F. Li, C.F. Wu, T.R. Wei, Z.B. Xing, M.G. KanatzidisThermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnSJ Mater Chem, 2 (2014), pp. 17302-17306
[49] J.P. Perdew, K. Burke, M. ErnzerhofGeneralized gradient approximation made simplePhys Rev Lett, 77 (1998), pp. 3865-3868
[50] T. Physik, T. Wien, W. HauptstrasseAb initio molecular dynamics for liquid metalsPhys Rev B, 47 (1993), p. 558
[51] G. Kresse, J. FurthmüllerEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys Rev B Condens Matter, 54 (1996), pp. 11169-11186
[52] C. Adenis, J. Olivier-Fourcade, J.C. Jumas, E. PhilippotEtudes sur le système ternaire Sn-In-S. Analyses thermique differentielle et radiocristallographique du pseudobinaire SnS-In2S3. Croissance en phase vapeur et caractérisation de composés a valences mixtes de l'étainJ Solid State Chem, 65 (1986), pp. 251-259
[53] A.R. Ettema, R.A. de Groot, C. Haas, T.S. TurnerElectronic structure of SnS deduced from photoelectron spectra and band-structure calculationsPhys Rev B Condens Matter, 46 (1992), p. 7363

Memo

Memo:


Last Update: 2018-11-22