|Table of Contents|
[1].Low-cost and environmentally benign selenides as promising thermoelectric materials[J].Journal of Materiomics,2018,(04):304-320.[doi:https://doi.org/10.1016/j.jmat.2018.07.001]
 Tian-Ran Weia,b,Chao-Feng Wua,et al.Low-cost and environmentally benign selenides as promising thermoelectric materials[J].Journal of Materiomics,2018,(04):304-320.[doi:https://doi.org/10.1016/j.jmat.2018.07.001]
Copy

Low-cost and environmentally benign selenides as promising thermoelectric materials(PDF)



Journal of Materiomics[ISSN:/CN:]

volumne:
Issue:
2018年04期
Page:
304-320
Research Field:
Publishing date:
2018-11-22

Info

Title:
Low-cost and environmentally benign selenides as promising thermoelectric materials
Highlights:
Tian-Ran WeiabChao-Feng WuaFuLicdJing-Feng Lia
aState Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; bState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China; cShenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Energy, Shenzhen University, Shenzhen, 518060, China; dAdvanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
Keywords:
Thermoelectric materialsSelenidesTransport properties
PACS:
-
DOI:
https://doi.org/10.1016/j.jmat.2018.07.001
Abstract:
Developing high-efficiency materials with earth-abundant and low-toxicity elements has become a popular trend in the field of thermoelectrics. Among these compounds, oxides and sulfides, the lighter, cheaper and green analogies of tellurides, have been extensively investigated and summarized as well defined classes. Nonetheless, the vast family of selenides with better electrical performance, lower thermal conductivity and higher thermoelectric efficiency have not been specially discussed. Here in this review, we present recent advances in binary and multinary selenide thermoelectric materials, covering traditional PbSe, liquid-like Cu2Se, layered SnSe, diamond-like and disordered multinary compounds. The features of selenides are discussed based on both environmental concerns and from the perspective of chemical bonding, transport properties and performance. Emphasis is put on the “composition-structure-processing-performance” relationship, and some interesting issues are addressed. Finally, challenges for thermoelectric selenides are discussed, and possible optimization strategies are also suggested.

References:

[1] G.J. Snyder, E.S. TobererComplex thermoelectric materialsNat Mater, 7 (2008), pp. 105-114
[2] G. Tan, L.-D. Zhao, M.G. KanatzidisRationally designing high-performance bulk thermoelectric materialsChem Rev, 116 (2016), pp. 12123-12149
[3] J. He, T.M. TrittAdvances in thermoelectric materials research: looking back and moving forwardScience, 357 (2017)eaak 9997
[4] J.-F. Li, Y. Pan, C.-F. Wu, et al.Processing of advanced thermoelectric materialsSci China Technol Sci, 60 (2017), pp. 1347-1364
[5] S.I. Kim, K.H. Lee, H.A. Mun, et al.Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectricsScience, 348 (2015), pp. 109-114
[6] B. Poudel, Q. Hao, Y. Ma, et al.High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloysScience, 320 (2008), pp. 634-638
[7] K. Biswas, J. He, I.D. Blum, et al.High-performance bulk thermoelectrics with all-scale hierarchical architecturesNature, 489 (2012), pp. 414-418
[8] Y. Pei, X. Shi, A. LaLonde, et al.Convergence of electronic bands for high performance bulk thermoelectricsNature, 473 (2011), pp. 66-69
[9] T. Zhu, C. Fu, H. Xie, et al.High efficiency half-heusler thermoelectric materials for energy harvestingAdv Energy Mater, 5 (2015), p. 1500588
[10] Zong P-a, R. Hanus, M. Dylla, et al.Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric deviceEnergy Environ Sci, 10 (2017), pp. 183-191
[11] W. Liu, X. Tan, K. Yin, et al.Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutionsPhys Rev Lett, 108 (2012), p. 166601
[12] P. Ying, X. Liu, C. Fu, et al.High performance α-MgAgSb thermoelectric materials for low temperature power generationChem Mater, 27 (2015), pp. 909-913
[13] L.-D. Zhao, J. He, D. Berardan, et al.BiCuSeO oxyselenides: new promising thermoelectric materialsEnergy Environ Sci, 7 (2014), pp. 2900-2924
[14] L.-D. Zhao, S.-H. Lo, Y. Zhang, et al.Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystalsNature, 508 (2014), pp. 373-377
[15] L.-D. Zhao, G. Tan, S. Hao, et al.Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSeScience, 351 (2016), pp. 141-144
[16] H. Liu, X. Shi, F. Xu, et al.Copper ion liquid-like thermoelectricsNat Mater, 11 (2012), pp. 422-425
[17] H. Chen, H. Lin, Z.X. Lin, et al.Superionic Adjustment leading to weakly temperature-dependent ZT values in bulk thermoelectricsInorg Chem, 54 (2015), pp. 867-871
[18] S. Bhattacharya, R. Basu, R. Bhatt, et al.CuCrSe2: a high performance phonon glass and electron crystal thermoelectric materialJ Mater Chem A, 1 (2013), pp. 11289-11294
[19] G. Sun, X. Qin, D. Li, et al.Enhanced thermoelectric performance of n-type Bi2Se3 doped with CuJ Alloy Compd, 639 (2015), pp. 9-14
[20] W. Mi, P. Qiu, T. Zhang, et al.Thermoelectric transport of Se-rich Ag2Se in normal phases and phase transitionsAppl Phys Lett, 104 (2014), p. 133903
[21] L.-D. Zhao, S. Hao, S.-H. Lo, et al.High thermoelectric performance via hierarchical compositionally alloyed nanostructuresJ Am Chem Soc, 135 (2013), pp. 7364-7370
[22] Y. Liu, G. García, S. Ortega, et al.Solution-based synthesis and processing of Sn- and Bi-Doped Cu3SbSe4 nanocrystals, nanomaterials and ring-shaped thermoelectric generatorsJ Mater Chem A, 5 (2016), pp. 2592-2602
[23] W. Li, S. Lin, X. Zhang, et al.Thermoelectric properties of Cu2SnSe4 with intrinsic vacancyChem Mater, 28 (2016), pp. 6227-6232
[24] S. Lin, W. Li, S. Li, et al.High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phononsJoule, 1 (2017), pp. 1-15
[25] L. Pan, D. Berardan, N. DragoeHigh thermoelectric properties of n-type AgBiSe2J Am Chem Soc, 135 (2013), pp. 4914-4917
[26] J.S. Rhyee, K.H. Lee, S.M. Lee, et al.Peierls distortion as a route to high thermoelectric performance in In4Se3-x crystalsNature, 459 (2009), pp. 965-968
[27] S.N. Guin, A. Chatterjee, D.S. Negi, et al.High thermoelectric performance in tellurium free p-type AgSbSe2Energy Environ Sci, 6 (2013), pp. 2603-2608
[28] Y. Li, G. Liu, T. Cao, et al.Enhanced thermoelectric properties of Cu2SnSe3 by (Ag, In)-Co-dopingAdv Funct Mater, 26 (2016), pp. 6025-6032
[29] B. Jiang, P. Qiu, E. Eikeland, et al.Cu8GeSe8-based thermoelectric materials with an argyrodite structureJ Mater Chem C, 5 (2017), pp. 943-952
[30] A.A. Olvera, N.A. Moroz, P. Sahoo, et al.Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2SeEnergy Environ Sci, 10 (2017), pp. 1668-1676
[31] X.Y. Shi, F.Q. Huang, M.L. Liu, et al.Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1-xInxSe4Appl Phys Lett, 94 (2009), p. 122103
[32] J. Li, L.-D. Zhao, J. Sui, et al.BaCu2Se2 based compounds as promising thermoelectric materialsDalton Trans, 44 (2015), pp. 2285-2293
[33] W.G. Zeier, A. Zevalkink, Z.M. Gibbs, et al.Thinking like a chemist: intuition in thermoelectric materialsAngew Chem Int Ed, 55 (2016), pp. 2-18View Record in Scopus
[34] J.A. OberMineral commodity summaries 2018US Geological Survey (2018)
[35] S. TaylorAbundance of chemical elements in the continental crust: a new tableGeochem Cosmochim Acta, 28 (1964), pp. 1273-1285
[36] D. Zou, S. Xie, Y. Liu, et al.Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch = S, Se and Te): first-principles calculationsJ Mater Chem A, 1 (2013), pp. 8888-8896
[37] K. Koumoto, Y. Wang, R. Zhang, et al.Oxide thermoelectric materials: a nanostructuring approachAnnu Rev Mater Res, 40 (2010), pp. 363-394
[38] Z.-H. Ge, L.-D. Zhao, D. Wu, et al.Low-cost, abundant binary sulfides as promising thermoelectric materialsMater Today, 19 (2016), pp. 227-239
[39] J. Yang, L. Xi, W. Qiu, et al.On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspectivenpj Comp Mater, 2 (2016), p. 15015View Record in Scopus
[40] L. Xi, J. Yang, L. Wu, et al.Band engineering and rational design of high-performance thermoelectric materials by first-principlesJ Materiomics, 2 (2016), pp. 114-130
[41] T. Zhu, Y. Liu, C. Fu, et al.Compromise and synergy in high-efficiency thermoelectric materialsAdv Mater, 29 (2017), p. 1605884
[42] H. Wang, Y. Pei, A.D. LaLonde, et al.Material design considerations based on thermoelectric quality factorK. Koumoto, T. Mori (Eds.), Thermoelectric Nanomaterials: Materials Design and Applications, Springer, Heidelberg (2013), pp. 3-32
[43] H. Wang, E. Schechtel, Y. Pei, et al.High thermoelectric efficiency of n-type PbSAdv Energy Mater, 3 (2013), pp. 488-495
[44] C.-F. Wu, T.-R. Wei, J.-F. LiEnhancing average ZT in pristine PbSe by over-stoichiometric Pb additionAPL Mater, 4 (2016), p. 104801
[45] H. Wang, Y. Pei, A.D. LaLonde, et al.Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSeProc Natl Acad Sci U S A, 109 (2012), pp. 9705-9709
[46] H. Wang, Y. Pei, A.D. LaLonde, et al.Heavily doped p-type PbSe with high thermoelectric performance: an alternative for PbTeAdv Mater, 23 (2011), pp. 1366-1370
[47] Y. Lee, S.-H. Lo, J. Androulakis, et al.High-performance tellurium-free thermoelectrics: all-scale hierarchical structuring of p-type PbSe-MSe systems (M = Ca, Sr, Ba)J Am Chem Soc, 135 (2013), pp. 5152-5160
[48] H. Wang, Z.M. Gibbs, Y. Takagiwa, et al.Tuning bands of PbSe for better thermoelectric efficiencyEnergy Environ Sci, 7 (2014), pp. 804-811
[49] S. Wang, G. Zheng, T. Luo, et al.Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performanceJ Phys D Appl Phys, 44 (2011), p. 475304
[50] Q. Zhang, F. Cao, W. Liu, et al.Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe1-yseyJ Am Chem Soc, 134 (2012), pp. 10031-10038
[51] J. Androulakis, D.-Y. Chung, X. Su, et al.High-temperature charge and thermal transport properties of the n-type thermoelectric material PbSePhys Rev B, 84 (2011), p. 155207
[52] C.-F. Wu, T.-R. Wei, J.-F. LiElectrical and thermal transport properties of Pb1-xSnxSe solid solution thermoelectric materialsPhys Chem Chem Phys, 17 (2015), pp. 13006-13012
[53] Q. Zhang, H. Wang, W. Liu, et al.Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenideEnergy Environ Sci, 5 (2012), pp. 5246-5251
[54] Y. Lee, S.-H. Lo, C. Chen, et al.Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenideNat Commun, 5 (2014), p. 3640
[55] Y. Han, Z. Chen, C. Xin, et al.Improved thermoelectric performance of Nb-doped lead selenideJ Alloy Compd, 600 (2014), pp. 91-95
[56] Y.I. Ravich, B.A. Efimova, I.A. SmirnovSemiconducting lead chalcogenidesSpringer Science & Business Media, New York (1970)
[57] E.S. Toberer, L.L. Baranowski, C. DamesAdvances in thermal conductivityAnnu Rev Mater Res, 42 (2012), pp. 179-209
[58] S.V. Kershaw, A.S. Susha, A.L. RogachNarrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical propertiesChem Soc Rev, 42 (2013), pp. 3033-3087
[59] C.-F. Wu, T.-R. Wei, F.-H. Sun, et al.Nanoporous PbSe-SiO2 thermoelectric compositesAdv Sci, 4 (2017), p. 1700199
[60] C. Gayner, K.K. KarInherent room temperature ferromagnetism and dopant dependent Raman studies of PbSe, Pb1?xCuxSe, and Pb1?xNixSeJ Appl Phys, 117 (2015), p. 103906
[61] H. Liu, J. Yang, X. Shi, et al.Reduction of thermal conductivity by low energy multi-Einstein optic modesJ Materiomics, 2 (2016), pp. 187-195
[62] Y. Sun, L. Xi, J. Yang, et al.The “electron crystal” behavior in copper chalcogenides Cu2X (X = Se, S)J Mater Chem A, 5 (2017), pp. 5098-5105
[63] H. Liu, X. Yuan, P. Lu, et al.Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1-xIxAdv Mater, 25 (2013), pp. 6607-6612
[64] K. Zhao, A.B. Blichfeld, H. Chen, et al.Enhanced thermoelectric performance through tuning bonding energy in Cu2Se1-xSx liquid-like materialsChem Mater, 29 (2017), pp. 6367-6377
[65] R. Nunna, P. Qiu, M. Yin, et al.Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTsEnergy Environ Sci, 10 (2017), pp. 1928-1935
[66] P. Qiu, T. Zhang, Y. Qiu, et al.Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivityEnergy Environ Sci, 7 (2014), pp. 4000-4006
[67] P. Qiu, X. Shi, L. ChenCu-based thermoelectric materialsEnergy Storage Mater, 3 (2016), pp. 85-97
[68] S. Mishra, S. Satpathy, O. JepsenElectronic structure and thermoelectric properties of bismuth telluride and bismuth selenideJ Phys Condens Matter, 9 (1997), p. 461
[69] P. Larson, V.A. Greanya, W.C. Tonjes, et al.Electronic structure of Bi2X3 (X=S,Se,T)compounds: comparison of theoretical calculations with photoemission studiesPhys Rev B, 65 (2002), p. 085108
[70] N. Xu, Y. Xu, J. ZhuTopological insulators for thermoelectricsnpj Quantum Materials, 2 (2017), p. 51
[71] H. Zhang, C.-X. Liu, X.-L. Qi, et al.Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surfaceNat Phys, 5 (2009), pp. 438-442
[72] O.A. Tretiakov, A. Abanov, J. SinovaHoley topological thermoelectricsAppl Phys Lett, 99 (2011), p. 113110
[73] Y. Sun, Z. Zhong, T. Shirakawa, et al.Rocksalt SnS and SnSe: native topological crystalline insulatorsPhys Rev B, 88 (2013), p. 235122
[74] Z. Wang, J. Wang, Y. Zang, et al.Molecular beam epitaxy-grown SnSe in the rock-salt structure: an artificial topological crystalline insulator materialAdv Mater, 27 (2015), pp. 4150-4154
[75] J.S. Rhyee, K. Ahn, K.H. Lee, et al.Enhancement of the thermoelectric figure-of-merit in a wide temperature range in In4Se3-xCl0.03 bulk crystalsAdv Mater, 23 (2011), pp. 2191-2194
[76] J.S. Rhyee, J.H. KimChemical potential tuning and enhancement of thermoelectric properties in indium selenidesMaterials, 8 (2015), pp. 1283-1324
[77] E. Mooser, W.B. PearsonNew semiconducting compoundsPhys Rev, 101 (1956), pp. 492-493
[78] H.R. Chandrasekhar, R.G. Humphreys, U. Zwick, et al.Infrared and Raman spectra of the IV-VI compounds SnS and SnSePhys Rev B, 15 (1977), pp. 2177-2183
[79] T. Chattopadhyay, J. Pannetier, H.G.V. SchneringNeutron diffraction study of the structural phase transition in SnS and SnSeJ Phys Chem Solid, 47 (1986), pp. 879-885
[80] O. MadelungSemiconductors-basic dataSpringer, Berlin (1996)
[81] L.-D. Zhao, C. Chang, G. Tan, et al.SnSe: a remarkable new thermoelectric materialEnergy Environ Sci, 9 (2016), pp. 3044-3060
[82] C.W. Li, J. Hong, A.F. May, et al.Orbitally driven giant phonon anharmonicity in SnSeNat Phys, 11 (2015), pp. 1063-1069
[83] Y. Xiao, C. Chang, Y. Pei, et al.Origin of low thermal conductivity in SnSePhys Rev B, 94 (2016), p. 125203
[84] J.M. Skelton, L.A. Burton, S.C. Parker, et al.Anharmonicity in the high-temperature Cmcm phase of SnSe: soft modes and three-phonon interactionsPhys Rev Lett, 117 (2016), p. 075502
[85] C. Chang, M. Wu, D. He, et al.3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystalsScience, 360 (2018), pp. 778-783View Record in Scopus
[86] K. Peng, X. Lu, H. Zhan, et al.Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystalsEnergy Environ Sci, 9 (2016), pp. 454-460
[87] Q. Lu, M. Wu, D. Wu, et al.Unexpected large hole effective masses in SnSe revealed by angle-resolved photoemission spectroscopyPhys Rev Lett, 119 (2017), p. 116401
[88] A.T. Duong, V.Q. Nguyen, G. Duvjir, et al.Achieving ZT = 2.2 with Bi-doped n-type SnSe single crystalsNat Commun, 7 (2016), p. 13713View Record in Scopus
[89] T.-R. Wei, G. Tan, X. Zhang, et al.Distinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSeJ Am Chem Soc, 138 (2016), pp. 8875-8882
[90] C.-L. Chen, H. Wang, Y.-Y. Chen, et al.Thermoelectric properties of p-type polycrystalline SnSe doped with AgJ Mater Chem A, 2 (2014), pp. 11171-11176
[91] Q. Zhang, E.K. Chere, J. Sun, et al.Studies on thermoelectric properties of n-type polycrystalline SnSe1-xSx by iodine dopingAdv Energy Mater, 5 (2015), p. 1500360
[92] X. Wang, J. Xu, G. Liu, et al.Optimization of thermoelectric properties in n-type SnSe doped with BiCl3Appl Phys Lett, 108 (2016), p. 083902
[93] T.-R. Wei, C.-F. Wu, X. Zhang, et al.Thermoelectric transport properties of pristine and Na-doped SnSe1-xTex polycrystalsPhys Chem Chem Phys, 17 (2015), pp. 30102-30109
[94] T.-R. Wei, G. Tan, C.-F. Wu, et al.Thermoelectric transport properties of polycrystalline SnSe alloyed with PbSeAppl Phys Lett, 110 (2017), p. 053901
[95] G. Han, S.R. Popuri, H.F. Greer, et al.Facile surfactant-free synthesis of p-type SnSe nanoplates with exceptional thermoelectric power factorsAngew Chem Int Ed, 128 (2016), pp. 6543-6547
[96] Y. Li, F. Li, J. Dong, et al.Enhanced mid-temperature thermoelectric performance in textured SnSe polycrystals made of solvothermally synthesized powdersJ Mater Chem C, 4 (2016), pp. 2047-2055
[97] Y. Fu, J. Xu, G.-Q. Liu, et al.Enhanced thermoelectric performance in p-type polycrystalline SnSe benefiting from texture modulationJ Mater Chem C, 4 (2016), pp. 1201-1207
[98] G.S. Nolas, J. Sharp, H.J. GoldsmidThermoelectrics: basic principles and new materials developmentsSpringer, Berlin (2001)
[99] J.Y.W. SetoThe electrical properties of polycrystalline silicon filmsJ Appl Phys, 46 (1975), p. 5247
[100] J. Martin, L. Wang, L. Chen, et al.Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocompositesPhys Rev B, 79 (2009), p. 115311
[101] S. Wang, S. Hui, K. Peng, et al.Grain boundary scattering effects on mobilities in p-type polycrystalline SnSeJ Mater Chem C, 5 (2017), pp. 10191-10200
[102] G.A. SlackNew materials and performance limits for thermoelectric coolingD.M. Rowe (Ed.), CRC handbook of thermoelectrics, CRC Press, Boca Raton (1995), pp. 407-440View Record in Scopus
[103] L.I. Berger, V.D. ProchukhanTernary diamond-like semiconductorsConsultants Bureau, New York (1969)
[104] J. Zhang, R. Liu, N. Cheng, et al.High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compoundsAdv Mater, 26 (2014), pp. 3848-3853
[105] X. Shi, L. Xi, J. Fan, et al.Cu?Se bond network and thermoelectric compounds with complex diamondlike structureChem Mater, 22 (2010), pp. 6029-6031
[106] M.-L. Liu, F.-Q. Huang, L.-D. Chen, et al.A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q = S, Se)Appl Phys Lett, 94 (2009), p. 202103
[107] C.P. Heinrich, T.W. Day, W.G. Zeier, et al.Effect of isovalent substitution on the thermoelectric properties of the Cu2ZnGeSe4-xSx series of solid solutionsJ Am Chem Soc, 136 (2014), pp. 442-448
[108] W.G. Zeier, A. LaLonde, Z.M. Gibbs, et al.Influence of a nano phase segregation on the thermoelectric properties of the p-type doped stannite compound Cu2+xZn1-xGeSe4J Am Chem Soc, 134 (2012), pp. 7147-7154
[109] W.G. Zeier, Y. Pei, G. Pomrehn, et al.Phonon scattering through a local anisotropic structural disorder in the thermoelectric solid solution Cu2Zn1-xFexGeSe4J Am Chem Soc, 135 (2013), pp. 726-732
[110] Q. Song, P. Qiu, F. Hao, et al.Quaternary pseudocubic Cu2TMSnSe4 (TM = Mn, Fe, Co) chalcopyrite thermoelectric materialsAdv Electron Mater, 2 (2016), p. 1600312
[111] J.H. Wernick, K.E. BensonNew semiconducting ternary compoundsJ Phys Chem Solid, 3 (1957), pp. 157-159
[112] G. Busch, F. HulligerMineralien als Vorbilder Fur neue HalbleiterverbindungenHelv Phys Acta, 33 (1960), p. 657
[113] J. Garin, E. PartheThe crystal structure of Cu3PSe4 and other ternary normal tetrahedral structure compounds with composition 13564Acta Crystallogr B, 28 (1972), pp. 3672-3674
[114] A. PfitznerCrystal structure of tricopper tetraselenoantimonate (V), Cu3SbSe4Z Kristallogr, 209 (1994)685-685
[115] H. Nakanishi, S. Endo, T. IrieOn the electrical and thermal properties of the ternary chalcogenides A2lBlVX3, AIBVX2 and A3IBVX4 (AI = Cu; BIV = Ge, Sn; BV = Sb; X = S, Se, Te) ii. Electrical and thermal properties of Cu3SbSe4Jpn J Appl Phys, 8 (1969), pp. 443-449
[116] W. Scott, J.R. KenchPhase diagram and properties of Cu3SbSe4 and other A3IBVC4VI compoundsMater Res Bull, 8 (1973), pp. 1257-1268View Record in Scopus
[117] E.J. Skoug, J.D. Cain, P. Majsztrik, et al.Doping effects on the thermoelectric properties of Cu3SbSe4Sci Adv Mater, 3 (2011), pp. 602-606
[118] C. Yang, F. Huang, L. Wu, et al.New stannite-like p-type thermoelectric material Cu3SbSe4J Phys D Appl Phys, 44 (2011), p. 295404
[119] E.J. Skoug, J.D. Cain, D.T. MorelliHigh thermoelectric figure of merit in the Cu3SbSe4-Cu3SbS4 solid solutionAppl Phys Lett, 98 (2011), p. 261911
[120] D. Li, R. Li, X.-Y. Qin, et al.Co-precipitation synthesis of Sn and/or S doped nanostructured Cu3Sb1?xSnxSe4?ySy with a high thermoelectric performanceCrystEngComm, 15 (2013), pp. 7166-7170
[121] D. Li, R. Li, X.-Y. Qin, et al.Co-precipitation synthesis of nanostructured Cu3SbSe4 and its Sn-doped sample with high thermoelectric performanceDalton Trans, 43 (2014), pp. 1888-1896
[122] X.Y. Li, D. Li, H.X. Xin, et al.Effects of bismuth doping on the thermoelectric properties of Cu3SbSe4 at moderate temperaturesJ Alloy Compd, 561 (2013), pp. 105-108
[123] Y. Li, X. Qin, D. Li, et al.Transport properties and enhanced thermoelectric performance of aluminum doped Cu3SbSe4RSC Adv, 5 (2015), pp. 31399-31403
[124] T.-R. Wei, F. Li, J.-F. LiEnhanced thermoelectric performance of nonstoichiometric compounds Cu3?xSbSe4 by Cu deficienciesJ Electron Mater, 43 (2014), pp. 2229-2238
[125] T.-R. Wei, H. Wang, Z.M. Gibbs, et al.Thermoelectric properties of Sn-doped p-type Cu3SbSe4: a compound with large effective mass and small band gapJ Mater Chem A, 2 (2014), pp. 13527-13533
[126] Y. Zhang, L. Xi, Y. Wang, et al.Electronic properties of energy harvesting Cu-chalcogenides: p-d hybridization and d-electron localizationComput Mater Sci, 108 (2015), pp. 239-249
[127] E.J. Skoug, J.D. Cain, D.T. Morelli, et al.Lattice thermal conductivity of the Cu3SbSe4-Cu3SbS4 solid solutionJ Appl Phys, 110 (2011), p. 023501
[128] D.T. Do, S.D. ManhantiTheoretical study of defects in Cu3SbSe4: search for optimum dopants for enhancing thermoelectric propertiesJ Alloy Compd, 625 (2015), pp. 346-354
[129] P. Qiu, Y. Qin, Q. Zhang, et al.Intrinsically high thermoelectric performance in AgInSe2n-type diamond-like compoundsAdv Sci (2017), p. 1700727
[130] W. Li, S. Lin, B. Ge, et al.Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6Adv Sci, 3 (2016), p. 1600196
[131] B.K. Heep, K.S. Weldert, Y. Krysiak, et al.High electron mobility and disorder induced by silver ion migration lead to good thermoelectric performance in the argyrodite Ag8SiSe6Chem Mater, 29 (2017), pp. 4833-4839
[132] S.N. Guin, V. Srihari, K. BiswasPromising thermoelectric performance in n-type AgBiSe2: effect of aliovalent anion dopingJ Mater Chem A, 3 (2015), pp. 648-655
[133] P.F. Qiu, X.B. Wang, T.S. Zhang, et al.Thermoelectric properties of Te-doped ternary CuAgSe compoundsJ Mater Chem A, 3 (2015), pp. 22454-22461
[134] X. Wang, P. Qiu, T. Zhang, et al.Compound defects and thermoelectric properties in ternary CuAgSe-based materialsJ Mater Chem A, 3 (2015), pp. 13662-13670
[135] T.-R. Wei, C.-F. Wu, W. Sun, et al.Is Cu3SbSe3 a promising thermoelectric material?RSC Adv, 5 (2015), pp. 42848-42854
[136] A. PfitznerCu3SbSe3: synthese und KristallstrukturZ Anorg Allg Chem, 621 (1995), pp. 685-688
[137] W. Qiu, L. Xi, P. Wei, et al.Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchyProc Natl Acad Sci U S A, 111 (2014), pp. 15031-15035
[138] Y. Zhang, E. Skoug, J. Cain, et al.First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu-Sb-Se ternary semiconductorsPhys Rev B, 85 (2012), p. 054306
[139] W. Qiu, L. Wu, X. Ke, et al.Diverse lattice dynamics in ternary Cu-Sb-Se compoundsSci Rep, 5 (2015), p. 13643View Record in Scopus
[140] E.J. Skoug, D.T. MorelliRole of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compoundsPhys Rev Lett, 107 (2011), p. 235901
[141] M. Kirkham, P. Majsztrik, E. Skoug, et al.High-temperature order/disorder transition in the thermoelectric Cu3SbSe3J Mater Res, 26 (2011), pp. 2001-2005
[142] K. Tyagi, B. Gahtori, S. Bathula, et al.Thermoelectric properties of Cu3SbSe3 with intrinsically ultralow lattice thermal conductivityJ Mater Chem A, 2 (2014), pp. 15829-15835
[143] B. Jiang, P. Qiu, H. Chen, et al.An argyrodite-type Ag9GaSe6 liquid-like material with ultralow thermal conductivity and high thermoelectric performanceChem Commun, 53 (2017), pp. 11658-11661

Memo

Memo:


Last Update: 2018-11-22